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SHORT SUMMARY

What-to methods for the design of Public Transport (PT) traditionally maximize overall efficiency. They
do not generally embed the inequality of the distribution of accessibility into the optimization objective.
However, such inequality is crucial, as it contributes to the car-dependency of areas underserved by PT.
In fact, while inequality is generally considered in what-if methods, embedding it directly into a PT de-
sign optimization algorithm is challenging. We show here that this can be achieved by setting selected
bottom quantiles of the accessibility distribution as objective function. For simplicity, we focus on the PT
stop selection problem. With a heuristic algorithm, we compare the resulting equality-maximizing PT with
conventional efficiency-maximizing PT. Our numerical results show that, already with the sole stop selec-
tion, inequality of accessibility is significantly reduced. This shows potential for even greater inequality
reduction by applying our approach to other PT planning decisions.
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1 INTRODUCTION

The main indicator we consider in this paper is accessibility, i.e., the ease of reaching the opportunities, such
as schools, jobs, other people, from a location, via PT (Miller (2020)). A significant inequality characterizes
the geographical distribution of accessibility in real cities (Badeanlou et al. (2022)). Recent work attempts
to include in PT network design indicators of equality of PT deployment across a territory.

Camporeale et al. (2019) proposes a classic cost-minimizing PT design problem, with the addition of a
constraint preventing inequality of PT supply to exceed a certain threshold. PT supply is a local measure,
accounting for number of buses passing by or stops in a location: improving supply in a location can be
directly achieved by modifying PT production therein. We are instead interested in accessibility, which is
not local, and is thus more complex: the accessibility of a location may depend on the PT topology or op-
portunities in locations that may be further away but strongly connected. Therefore, improving accessibility
in a location cannot be achieved by simply changing PT production in the very same location, but always
require to consider the territory and the PT topology in their entirety. Kim et al. (2019) design PT lines to
reduce the difference in travel times between cars and PT. They do not consider accessibility either.

More similar to us, Dai et al. (2022) optimize headway and stop spacing of a single line for equality of
accessibility distribution. We however tackle a more realistic network with multiple lines, which prevent
the use of their method. The objective function of Yoo & Lee (2023) is the sum of accessibility of all areas,
weighted by “Transit Need” (TN) coefficients, so as to prioritize accessibility improvement in high-TN
areas. This submits PT design to political will, via appropriately adjusting TN computation. We propose
instead a method as objective as possible, based on geographical horizontal equality, which is technically
more difficult: we cannot rely on a simple weighted sum, but always deal with the entire distribution of
accessibilities.

Finding an effective way of expressing our inequality-reduction objective into an optimization algorithm
is challenging. Our preliminary attempts of using inequality indicators (Costa et al. (2019)) directly into
the objective function resulted in poor performance. The classic max-min optimization, which in our case
would mean to maximize the lowest accessibility, also was ineffective, as it tends to improve accessibility of



too few locations, often remote or isolated, which then results in a weak improvement of global inequality
indices and an excessive loss in overall efficiency.

We propose here a novel approach for equality-maximization PT design, consisting in maximizing some
bottom quantiles of the accessibility distribution. We apply our approach to the PT stop selection problem,
which we solve with a heuristic algorithm. Numerical results show significant improvement in equality, with
a negligible loss of overall efficiency. Via statistically analyzing the results of the optimization algorithms,
we infer some simple guidelines for equality-based PT design. Our code is available as open source (Wang
(2023)).

2 METHODOLOGY
Model of the Public Transport Network

A PT network is modeled as a graph G as (Figure 1). A PT line (train, metro or bus) is a sequence of stops,
linked by corresponding edges. On each PT line / a number N, of vehicles operate, traveling at speed Vyep.
At each stop, a vehicle stays for a dwell time #4ye) to allow boarding and alighting. We include in #gye) the
time lost in acceleration and deceleration. Assume a line with stop sequence s1,...,sk, and let us denote
with d(s;,s+1) the Euclidean distance between s; and s;1 1. The time a vehicle takes to visit the entire line

isT; = ZK’ ! (M + tdwen) . As in Desaulniers & Hickman (2007) and Pinto et al. (2020), the headway

Vveh
and the average waiting time of line / are H; =2 - T;/N; and w; = H; /2, respectively.
Graph G represents PT network in a certain timeslot, within which we assume that line routes and headway
values do not change. In further work, the operation of PT during a day could be represented as a sequence
of graphs, one per each timeslot.
For simplicity, we consider a square study area, partitioned with a regular tessellation (no matter the shape
of the tiles). The center of each tile is called centroid. We denote with V the set of centroids. Each tile
contains a certain amount of opportunities, that we associate to the respective centroid. Users start at any
centroid and are willing to reach opportunities around other centroids.In the numerical results, we will
consider a particular form of accessibility, called sociality score (Biazzo et al. (2019)), where people are
considered as opportunities.
A trip can be performed entirely by walking, or combining walking and PT. Within the PT network, a user
can change from line /; to line I,, if the egress stop s in /; and the ingress stop s’ in , are within distance
dexchange- Multiple changes are allowed. When entering line / (directly after walking or during a change
of line), a user suffers waiting time w;. User always travels along shortest time path. More advanced PT
assignments (Spiess & Florian (1989)) could be considered without changing the spirit of this work.

Accessibility

The gravity-based definition of accessibility (Miller (2020)) of centroid v € V) is
acc(v) = Z X(u)-f(Tu) (D

uey

where T, is the shortest time to go from v to u,f(-) is the impedance function and X (u) is the amount of
opportunities of the tile having centroid u. Choosing impedance function f(T) = T~! has the advantage of
expressing accessibility in intuitive units of measurement, i.e. number of opportunities that can be reached
per hour. When optimizing for equality, we will focus in particular on set V"% of the worst m% centroids,
i.e., those with the lowest accessibility. We define the accessibility of graph G as:

Acc(G;m) Z acc(v (2)

vEV”’%

‘Vm%
which, with m = 100, corresponds to average accessibility acc(G) = Acc(G,100).
Inequality index

Denoting the accessibility values of centroids vy,...,vk by yi,...,yk respectively, the Atkison inequality
index is (from Costa et al. (2019), setting € = 2):

‘ -1
Ath(G) = 1—%@)- (11<,2in> 3)

i=1



Figure 1: An example of PT network: 4 PT lines containing 40 stops and 100 centroids

The Atkinson index goes from O (perfect equality) to 1 (maximum inequality). When we tried to embed the
inequality indices directly into the optimization, we found poor results, as such indices are poorly sensitive
to PT modifications. We therefore only use (2) during optimization and compute the inequality index a
posteriori, to check the quality of the solution. If there is data about population age, income distribution,
etc., we can also calculate the vertical equity resulting from our optimization. Results did not changes when
we used other indicators,e.g., Theil, Gini, Pietra.

Heuristic algorithm

As shown in Algorithm 1, for a given PT graph G, we run n independent instances of the heuristic algorithm.
Each instance randomly deactivate stops. Each time a stop is deactivated, the corresponding line is consoli-
dated: the edges incident to that stop are removed and a new edge is added between the stop before and the
stop after the removed one, thus reducing travel and dwell times. We consider in the numerical results a bus
network, where edge consolidation also reduces the traveled distance. The method can be generalized to
rail networks, where distance would not be reduced. The algorithm might also remove, in some iterations,
stops that are connected to multiple lines. If such connections were used by many shortest paths, this may
generally decrease accessibility. However, the algorithm selects the best solution (Lines 9,11), which is
likely to filer out solutions where “important” connections have been cut. Figure 6 will confirm this. Note
that deactivating a stop does not necessarily mean to physically removing it, but to simply skip it during the
considered timeslot.

Efficiency-based optimization (in short Ef-Opt) is obtained by running Algorithm 1 with m = 100, so
that the search algorithm will tend to maximize the average accessibility. Equality-based optimization
(in short Eq-Opt) is instead obtained with m = 5, to preferentially improve the accessibility of the worst
5% centroids. Given initial graph G, we denote with ggf and ;‘q the respective results. We found that for
m smaller than 5, we tend to improve accessibility of only few remote centroids, without achieving good
overall inequality (poor Atkison index) and excessively degrading overall accessibility, similar to maxmin
optimization. On the other hand, higher values of m would excessively penalize equality in favor of overall
accessibility.



Algorithm 1: Heuristic algorithm
1: Input Public transport graph G with stops S.
Parameter m of the accessibility formula (2).

2: For search instance i < 1 ton:
3: Initialize Gy < G and Sy < S.
4: For step 1 < 0 to oo until less than rn,,; stops remain active:
5: Select a random stop s; € S; and deactivate it.
6: Set S;41 <S¢\ {s; } and let G, the resulting PT graph.
7: Compute the new accessibility: Acc(G;+1;m)
8: EndFor

9: Record Gi = argmax’;;]oAcc(gT,m).
10: EndFor

11: Return PT graph G* = argmax’_, Acc(G',m).

3 NUMERICAL EVALUATION
Considered scenarios

Due to city peculiarities, morphological constraints, pre-existent infrastructure and even political influences
real PT networks are extremely heterogeneous and often characterized by irrationality and inefficiency.
We could have considered few cities, model their PT graph and apply our optimization. However, we
would have ended up in a few case studies, without assessing the generality of our approach faced with PT
heterogeneity. Since the focus of this paper is on the method, rather than specific case studies, we choose
instead to synthetically generate 50 PT graphs and verify the performance is satisfying, no matter the graph
at hand. We study the graphs resulting from Ef-Opt (baseline) and from Eq-Opt, which we advocate.

A synthetic graph includes multiple lines, generated via Algorithm 2, which captures the properties of real
PT lines. Stop spacing increases with the distance from the center, as in Furth et al. (2000) (Lines (4)-(5)
of Algorithm 2). To achieve the clear directionality, we allow limited direction change from a line segment
to the next (Lines (6)-(8) of Algorithm 2). If a stop falls outside the study area, the algorithm restarts.
Figure 1 gives an example of graph. We only present experiments with 8 lines, as with fewer lines trends
were similar after adjusting number 7 of search instances of Algorithm 1: with 4 lines increasing n > 5 did
not bring improvement in the performance, while with 8 lines improvmement stops after n = 20 instances.
We visualize a large set of synthetic PT graphs and verify they reasonably represent realistic PT networks.

Algorithm 2: Generation of a synthetic PT line.

1: Input: Range © of A@; Maximum number S of stops;

2: Initialization: Random initial bus stop location: sp; Set S = {so} of bus stops; Random
initial angle 6 (with respect to the horizontal axis); Set the initial graph G as only composed
by node sg with no edges.

3: repeat

4 Calculate the distance x from stop s;_ to the center

5:  Calculate the distance between s;_; and s; as 1/f(x) (see Table 1)

6:  Choose an angle A8 uniformly at random from set ®
7

8

9

Calculate 6 = 6 + A0
Calculate the location of the new bus stop, at distance 1/ (x) and angle 6 + A6
Add the new stop s; to S and an edge from s; 1 to s;

10: until The number of stops in S reaches S

11: Return PT graph G made of stops S and the added edges

We set amount X () of opportunities in the tile around centroid u. Since the considered accessibility is the
sociality score, opportunities correspond to residents:

X(u)=C-p(u) 4)

where C = 0.25km? is the area of a tile, p (u) is the population density, uniformly distributed inside the tile
around u and constant within the considered timeslot. Population density follows the classic pattern (Muth
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Figure 2: Stop spacing.
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Figure 3: Cumulative Distribution Functions (CDFs) of Atkinson index and average accessibility
after Eq-Opt and Ef-Opt

(1967)):
p(u) = py-e” 74 )

where d(u) is the distance between centroid u and the city center, pyp and y are hyperparameters. Stop
spacing at distance x from the center is 1/f(x), where f3(x) is the stop density and, similar to population
density, follows an exponential distribution Furth et al. (2000) (Figure 2). Table 1 reports the adopted
parameter values.

Results

For all generated graphs G;,i = 1..50, we compute average accessibilities a; = Acc( ;feq, 100) of graph
QZ oq OPtimized via Eg-Opt. Subsequently, we perform the same calculation using Ef-Opt optimization,
resulting in values b;,i = 1..50. The ¢-test on these two lists yelds p-value = 0.0377, indicating a significant
difference in average accessibility between Eq-Opt and Ef-Opt. A similar t-test on the lists of Atkinson
inequality indices yelds p-value = 0.0005, indicating that the reduction of inequality obtained via Eq-Opt
is very significant. For each graph, we compute the two indices above and we report their Cumulative
Distribution Function (CDF) over the 50 graphs in Figure 3. Atkinson’s inequality is consistently lower
with Eg-Opt than with Ef-Opt, at the cost of a slight decrease in average accessibility. This is a trade-off
between efficiency and equality. If we place excessive emphasis on efficiency, the resulting design may be
very unequal.

Figure 4 focus on one exemplary graph G;, chosen randomly. Each dot corresponds to a centroid u. The
x-coordinate indicates its accessibility acc(u) (before optimization), while the y-coordinate indicates the
improvement in accessibility obtained in Q:eq and in g;jef, i.e., the number of additional persons per hour
that is possible to reach with respect to the initial graph G;. Quadratic regression lines and 95% confi-
dence intervals are also shown. Observe that Eq-Opt concentrates the improvement within disadvantaged
centroids, i.e., those with low accessibility in G;, at the cost of a slight decrease in accessibility for the
advantaged centroids.



Table 1: Scenario parameters

Parameter Value
PT networks 4500 m x 4500 m
Number of synthetic graphs 50
Number of PT lines per graph 8
Number of PT stops per line 10
Number of centroids 100
Distance

between two nearest centroids 500 m

maximum distance dexchange that user can walk to change line 300m
Average speed

walking (Ali et al. (2018)) 60 mmin !

PT 300 mmin !
Dwell time 1 min

Stop density at distance x from the center (fy and ¥’ are such that
spacing is 1/130m in the center and 1/400m at the extremum of
the study area, in line with Furth et al. (2000))

Parameters of Algorithm 1

m

n

Mena

number of PT overall stops for termination 7,4
Parameters of Algorithm 2

0
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Parameters of Formula (5)(Bai et al. (2015))
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Figure 6: Relation between the probability of skipping a stop and the number of bus lines nearby
(Note dexcpange = 300 m is the maximum distance users walk to change line, see Table 1)

Next, we consider two features of each bus stop: distance D from the center and number nbl; of bus lines
recheable within 300 m. For each value of D, we take the 100 stops having D; closest to D and calculate
what proportion of them were skipped. Figure 5 shows that the closer the distance it from the center, the
higher the probability that Eg-Opt skips bus stops. The significant higher skipping probability within 1Km
from the city center means that in the initial graphs, where spacing is generated as in real deployments
(Furth et al. (2000)), stop density is excessive and is not useful to accessibility. This confirms that need of
de-densifying stop distribution, already raised by Furth et al. (2000). Figure 6 plots feature nbl (gray bars)
per each stop s, and the probability of skipping a stop is calculated in the same way as in Figure 5. Figure 6
shows Eq-Opt and Ef-Opt both tend not to skip stops that are close to other bus lines. Indeed, skipping such
stops would strongly reduce the possibility of line change, thus cutting out paths that may greatly contribute
to accessibility. Figure 7 shows that it is generally preferable, for both efficiency and equality, to maintain
higher stop density close to the center.
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Figure 7: Relation between the distance to the nearest stop and the distance to the center



4 CONCLUSIONS

We proposed a method to embed the inequality of the distribution of accessibility into the decisions within
a what-to PT planning strategy. We applied it the stop selection problem. Numerical results show that
significant reduction of inequality of accessibility is achievable, which encourages to pursue future work,
applying such a method on other dimensions of PT planning.
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