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SHORT SUMMARY 

Electric micromobility, or e-scooters and e-bikes may offer an alternative to the use of private 

cars. These micromobility devices, while lighter and less resource-intensive than cars, still require 

different metals and minerals. In this paper, we build a dynamic material flow model for shared 

e-scooters and private e-bikes in Finland, with an emphasis on their batteries, as these contain 

many critical raw materials. Our aim is to quantify the future urban mining potential of micromo-

bility. We use Weibull distributions to model the lifetimes of micromobility devices and their 

batteries and discrete-time Bass diffusion to model the uptake of e-bikes as an innovation. In our 

baseline scenario, the outflow of used e-scooter batteries will be approximately 25,400 units and 

the outflow of used e-bike batteries some 217,000 units annually. For both types of devices, the 

main drivers of uncertainty are battery lifetime and the volume of future sales. 

 

Keywords: Bayesian inference, e-bikes, e-scooters, fleet modelling, micromobility, shared 

mobility 

1. INTRODUCTION 

Transport produces 15% of the global greenhouse-gas (GHG) emissions (EDGAR, 2023) and as 

much as 33% in EU-27 and 24% Finland (European Environment Agency, 2024), when including 

aviation and shipping. Thus, there is an evident need for decarbonization of the transport sector. 

Yet, according to most forecasts, electric vehicles will still form only a minority of the global car 

fleet in 2040 (Kapustin & Grushevenko, 2020). Because the world is struggling to meet the 1.5°C 

target of the Paris agreement, it is natural to ask, if part of the transport-related emissions could 

be avoided by replacing private cars by other modes of transport. In this paper, we focus on elec-

tric micromobility which extends the range and speed of active mobility (walking and cycling) 

and does not possess many of the limitations of public transport (fixed schedules and routes etc.). 
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Electric micromobility involves most importantly e-bikes and e-scooters. In the UK, mass usage 

of e-bikes could have a potential to reduce CO2 emissions by 10%, significantly more than ordi-

nary bikes (Philips et al., 2022). E-scooters seem to have less potential. Indeed, in Germany, it 

has been estimated that they can replace only 2% of car kilometers, and consequently little of the 

total CO2 emissions (Gebhardt et al., 2022). This is largely because e-scooters are typically used 

for shorter trips, the average distance being approximately 1.5 km (Zou et al., 2020). However, 

e-scooters are still an emerging technology and their popularity seems to be growing in Finland 

(Traficom, 2023). 

 

Both e-bikes and e-scooters run on grid-based electricity and have predominantly lithium-ion bat-

teries in Europe. Lithium-ion batteries contain many critical elements or strategic raw materials, 

such as cobalt, lithium, nickel and manganese (European Commission et al., 2023). Thus, the 

batteries of the electric micromobility devices may increase Europe’s dependence on global sup-

ply chains, and on the other hand, used batteries contain valuable materials which could be recov-

ered. Thus, there is potential for urban mining. 

 

In this paper, we focus on modelling electric micromobility fleets, using shared e-scooters and 

private e-bikes in Finland as examples. Conceptually, our model could be termed as a dynamic 

material flow analysis (Deng et al., 2023). For the e-scooters, we build future scenarios around 

assumed fleet sizes of the e-scooter operators, using a result from recent literature (Reck et al., 

2021). For the e-bikes, we build future scenarios using Bass diffusion to model their market pen-

etration (Orbach, 2016; Lilien et al., 2000). Otherwise, both micromobility fleets can be modelled 

by using the same model structure. 

2. METHODOLOGY 

Model structure 

The model is based on two fundamental equations written as 

 

𝑁𝑥(0, 𝑡) = 𝑠𝑥(𝑡),                                                        (1) 

𝑁𝑥(𝑎 + 1, 𝑡 + 1) = (1 − 𝑃𝑥(𝑎))𝑁𝑥(𝑎, 𝑡)                                       (2) 

 

where 𝑥 denotes either an e-scooter, e-bike or a battery and 𝑁𝑥(𝑎, 𝑡) is the number of the objects 

of age 𝑎 in year 𝑡. The first equation states that the inflow is determined by purchases (either by 

the operators or private consumers). We note that 𝑠𝑥(𝑡) is not necessarily the same for the batteries 

and corresponding devices, as extra batteries are typically bought with each shared e-scooter. The 

second equation describes how the fleet ages, given the breakdown probability 𝑃𝑥(𝑎). Each device 

must have at least one battery. Thus, at the end of each calendar year, we adjust the stock of new 

batteries 𝑁𝑛𝑏(0, 𝑡) as 

 

     𝑁𝑛𝑏(0, 𝑡) = 𝑁𝑛𝑏
′ (0, 𝑡) + max{0, ∑ (𝑁𝑑𝑒𝑣(𝑎, 𝑡) − 𝑁𝑜𝑏(𝑎, 𝑡) − 𝑁𝑛𝑏(𝑎, 𝑡))∞

𝑎=0 }          (3) 

 

where 𝑁𝑛𝑏
′ (0, 𝑡) is the unadjusted value, 𝑁𝑛𝑏(0, 𝑡) is the adjusted value, and 𝑁𝑑𝑒𝑣(𝑎, 𝑡) and 

𝑁𝑜𝑏(𝑎, 𝑡) are the stocks of devices and old batteries, respectively. We distinguish between new 

and old batteries because e-scooters are typically bought to Finland as used, and thus, the batteries 

are old. The outflow of batteries is our main object of interest and is given by 
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𝑂𝐹(𝑡) = ∑ (𝑃𝑛𝑏(𝑎)𝑁𝑛𝑏(𝑎, 𝑡) + 𝑃𝑜𝑏(𝑎)𝑁𝑜𝑏(𝑎, 𝑡))∞
𝑎=0 .                          (4) 

 

We use the Weibull distribution (e.g., Rinne, 2008) to model the lifetimes of devices and batteries 

alike. This distribution is given by the density function 

 

𝑓(𝑎) =
𝑘

𝜆
(

𝑎

𝜆
)

𝑘−1
𝑒−(𝑎/𝜆)𝑘

                                                   (5) 

 

for 𝑎, 𝑘, 𝜆 > 0. (Note that the values of the parameters 𝑘 and 𝜆 depend on 𝑥.) The mean and 

variance of the Weibull distribution are given by 

 

𝜇 = 𝜆Γ(1 + 1/𝑘)                                                        (6) 

 

and 

𝜎2 = 𝜆2 [Γ (1 +
2

𝑘
) − (Γ (1 +

1

𝑘
))

2

],                                         (7) 

 

respectively. For each scenario, we assume that 𝜇 is known and 𝜎 = 0.5𝜇. Thus, we can solve the 

primary parameters from the values of 𝜇. We use the Broyden method (Dennis and Schnabel, 

1996), implemented in the R package nleqslv (Hasselman, 2023), to solve the system of equations 

(6-7). Finally, the breakdown rate between ages 𝑎 and 𝑎 + 1 is given by 

 

𝑃𝑥(𝑎) =
𝐹(𝑎+1)−𝐹(𝑎)

1−𝐹(𝑎)
+ 𝑣                                                    (8) 

 

where 𝐹 is the cumulative distribution function of the Weibull distribution and 𝑣 is the annual 

probability of vandalism. We calculate the breakdown rate of used devices and batteries as 

 

𝑃𝑥
(𝑢)

(𝑎) =
1

𝑐−𝑏
∫ 𝑃𝑥(𝑎 + 𝑢)

𝑐

𝑏
𝑑𝑢,                                               (9) 

 

as we assume that their initial age is distributed uniformly in (𝑏, 𝑐). We note that the rate 𝑃𝑥
(𝑢)

(𝑎) 

is a continuous function of age, even as the model is solved in discrete calendar time.     

E-scooters 

We consider only shared e-scooters, thus ignoring the privately owned ones due to lack of data. 

For the e-scooters, the model is stock-driven in the sense that a desired fleet size and a need to 

replace broken devices drives the e-scooter purchases of operators (Wiedenhofer et al., 2019). 

The total fleet size of shared e-scooters is known for years 2020–2022 (Traficom, 2023). How-

ever, the model is defined in terms of sales, and thus, we need to solve the sales’ timeseries. To 

this end, we use the following rationale:  

 

1. For 2020–2022, we use the Broyden method (Dennis and Schnabel, 1996) and the breakdown 

probabilities 𝑃𝑥
′(𝑎) to calculate the sales which produce the desired fleet size, i.e., we run the 

model with different three-year timeseries, until the algorithm converges and the fleet size 

matches the target.   

 

2. For each subsequent year, we assume that the size of the fleet must match a certain target and 

adjust the sales accordingly. This target is given by 
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𝑇(𝑡) = 𝑁2022𝑒−0.5(𝑡−2022) + 𝑁2030(1 − 𝑒−0.5(𝑡−2022)), 𝑡 = 2023, … ,2029          (10) 

𝑇(𝑡) = 𝑁2030, 𝑡 ≥ 2030                                               (11) 

 

where 𝑁2022 is the fleet size obtained from the data, 𝑡 is the calendar year and 𝑁2030 is the final 

fleet size assumed in each scenario. 

 

Table 1 presents the scenarios we consider in this study. The expert opinion cited in Table 1 

corresponds to interviews conducted with various e-scooter operators and city representatives in 

Finland during the second half of 2023. The same set of questions was asked from all stakehold-

ers. This included questions about the life cycle of shared e-scooters (manufacturing, use and 

logistics, and recycling). Note that individual answers cannot be identified from Table 1, as the 

scenarios are based on aggregated values. 

 

The estimate of future sales in higher and business-as-usual (BAU) scenarios is based on a density 

estimate from Reck et al. (2021). They report that increasing the density of shared e-scooters 

beyond 114-171 km-2 does not increase the probability to use them. Thus, it seems logical to 

assume that the operators will not increase the e-scooter density beyond this limit. We multiply 

these figures by the highly urbanized area of Finland. Highly urbanized area is here defined as 

the sum of pedestrian zone of city centers, pedestrian zone of subcenters and the fringe zone of 

city centers (Information service Liiteri, 2023), totaling 588 km2. 

 

Table 1. Parameters of the fleet model. The format of the ‘Values’ column is: business-as-

usual (BAU) scenario (low scenario – high scenario), where applicable. 

 

Shared e-scooters 

Parameter Values Justification 

Expected lifetime 5 yrs (4–6 yrs) Expert opinion (EO) 

Expected lifetime of batteries 3 yrs (2–4 yrs) EO 

Vandalism rate 0.02 yr-1 (0.01–0.03 yr-1) EO 

Age of shared e-scooters im-

ported to Finland 

A uniform distribution in 0–

2 yrs 

EO 

No. of batteries for each de-

vice 

1.3 (1.2–1.4) EO 

Past sales Calculated from fleet-size 

data 

Data source from Traficom 

(2023) 

Future fleet size in 2030 66,997 (stable fleet size–

100,495) 

BAU and the higher scenario 

are based on the density esti-

mates from Reck et al. (2021) 

and highly urbanized area of 

Finland (Information Service 

Liiteri, 2023), the lower sce-

nario from Traficom (2023) 

Private e-bikes 
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Expected lifetime 10 yrs (5–15 yrs) BAU value: Felipe-Falgas et 

al. (2022), lower value: 

Berjisian and Bigazzi (2019) 

Expected lifetime of batteries 5 yrs (3–7 yrs) EO  

Vandalism and theft rate 0.02 yr-1 (0.01–0.03 yr-1) Calibrated to the rate of bike 

theft in Finland 

(Bikesterredaktionen, 2024) 

Past fleet size Calculated from sales data Data from Traficom (2022) 

Increase of fleet size Sales given by the Bass 

model, s0(t) (s1(t)–s2(t)) 

Bayesian estimation: s0 is the 

scenario based on posterior 

mean parameter values. s1 and 

s2 are the 5th and 95th percen-

tile of the scenarios, as ranked 

by the total sales 

Ultimate market size (M) 20% of population owns an 

e-bike (16%–28% of popula-

tion owns an e-bike)   

BAU scenario: e-bike density 

from Switzerland (Office 

fédéral de la statistique, 

2023), lower scenario: e-bike 

density from Belgium (Gof-

finet, 2021), higher scenario: 

e-bike density from Nether-

lands (LEVA-EU, 2022) 

 

E-bikes 

The model is fleet-driven in the sense that we assume that sales are exogenous (Wiedenhofer et 

al., 2019). We have data on the sales of privately owned e-bikes from 2018–2022 (Traficom, 

2022). We have imputed this timeseries with 4,000 for 2017 to model the early adopters. We 

assume that e-bike ownership follows the discrete-time Bass model of Lilien et al. (2000). To this 

end, we first run the model with BAU parameter values (Table 1), assuming that each broken e-

bike is replaced. Thus, we obtain a timeseries of replacement sales 𝑠𝑟(𝑡). Subtracting this from 

the observed sales’ timeseries, we get the innovation sales, i.e., the sales to new users as 

 

𝑔(𝑡) = 𝑠(𝑡) − 𝑠𝑟(𝑡), 𝑡 = 2017, . . . ,2022.                                  (12) 

 

We model this timeseries by using a Bass model with random noise. The market penetration at 

time 𝑡 is 

𝐺(𝑡) =
1

𝑀
∑ 𝑔(𝑢)𝑡

𝑢=−∞                                                  (13) 

where 𝑀 is the total market size, with different scenarios given in Table 1. Using this definition, 

the innovation sales are modeled as   

𝑔(𝑡 + 1)~𝑁𝐵((𝛼 + 𝛽𝐺(𝑡))(1 − 𝐺(𝑡))𝑀, 𝜗)                                (14) 
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where 𝑁𝐵 denotes a negative-binomial distribution, and 𝛼, 𝛽 and 𝜗 are primary parameters to be 

estimated. We note that the dynamics of the model is such that 𝐺(𝑡) → 1 and 𝑔(𝑡) → 0 when 𝑡 →
∞, whereas the rate of convergence is determined by the values of 𝛼, 𝛽 and 𝜗. We parameterize 

the negative-binomial distribution so that the first term is the expectation and 𝜗 is a parameter 

known as ‘size’. We thus have the likelihood 

 

ℒ(𝒈|𝛼, 𝛽, 𝜗) = ∏ Γ(𝑔(𝑡) + 𝜗)(Γ(𝜗)𝑔(𝑡)!)−1𝑝(𝑡)𝜗(1 − 𝑝(𝑡))
𝑔(𝑡)2022

𝑡=2017 ,             (15) 

𝑝(𝑡) = 𝜗(𝜗 + (𝛼 + 𝛽𝐺(𝑡 − 1))(1 − 𝐺(𝑡 − 1))𝑀)−1.                             (16) 

 

We first seek the maximum-likelihood estimate of (𝛼, 𝛽, 𝜗) by using the Nelder-Mead method 

(1965) and then we assess the uncertainty of the parameter values by using the Haario-Saksman-

Tamminen algorithm (2001). Thus, we can predict the innovation sales of the e-bikes for future 

years. Additionally, we assume that there are replacement sales, i.e., that each broken e-bike is 

replaced. Thus, we define the total sales as the sum of 𝑔(𝑡) and 𝑠𝑟(𝑡), the latter being equal to 

device outflow. 

 

Otherwise, the model is the same as explained in the subsection ‘Model structure’. The parameter 

values used for e-bikes are given in Table 1. 

3. RESULTS AND DISCUSSION 

Figure 1 demonstrates the dynamics of our model. The model for e-scooters is stock-driven, so 

that the number of e-scooters at the end of each year is given by Eqs. 10-11 and the purchases of 

the operators are adjusted accordingly. We observe that the sales are expected to decrease in the 

BAU scenario, as the fleet size stabilizes. The model for e-bikes is based on Bass diffusion and 

calibrated to sales data. We observe that peak sales in the model occur between 2025 and 2030, 

after which new sales are expected to decrease and the sales are driven by the need to replace 

broken e-bikes. 

 

Figure 2 presents the simulation results for e-scooters. In the BAU scenario, the outflow of used 

batteries settles to approximately 25,400 units per year by 2030. The slight increase in the battery 

outflow after 2022 results from the fact that the age distribution of the fleet reaches the equilib-

rium state only gradually. The results show clearly that the main drivers of uncertainty are battery 

lifetime and the assumed future fleet size of e-scooters: In the lower sales scenario, the outflow 

of batteries stabilizes to some 20,900, and in the higher sales scenario, to some 38,100. We obtain 

34,400 and 20,200 for the lower and higher battery lifetime scenarios, respectively. Vandalism 

has been omitted from Figure 2 because in these scenarios, it only has a minor effect. 

 



7 

 

 
Figure 1. Dynamics of the model in the BAU scenario. The dotted lines represent the 

fleet sizes of e-scooters and e-bikes, whereas the solid lines represent sales, i.e., purchases of e-

scooters by the operators and e-bikes by the consumers.   

 

 
Figure 2. Simulation results for e-scooters. These results show the outflow of used batter-

ies from shared e-scooters in Finland. In all panels, the bold line is the BAU scenario, whereas 
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the other two lines are the two scenarios corresponding to low and high alternative parameter 

values. 

 

The picture is very different for private e-bikes (see Figure 3). First, the scale is greater than for 

the e-scooters. In the BAU scenario, the outflow of used batteries settles to 217,000 units by 2035. 

The main driver of uncertainty is battery lifetime, with the higher and lower scenarios stabilizing 

at 164,000 and 330,000, respectively. Perhaps surprisingly, the device lifetime has a minor effect 

(maximal difference in battery outflow: 2,200 units). The explanation is that the e-bike frame lasts 

much longer than the battery, so that the vast majority of the battery outflow comes from battery 

breakdowns. There are two types of uncertainty regarding future sales in the e-bike model: The 

parameter uncertainty related to the Bass model and the uncertainty related to the market size. Of 

these, the effect of market size is greater. Thus, if the market size is known, the parameters of the 

Bass model can be estimated fairly reliably. We note that the curves cross each other in the panel 

of the Bass parameters. This is because the peak sales occur in different years for different values 

of 𝛼, 𝛽 and 𝜗. 

 

It should be noted that these results are based on few data points and would have benefitted from 

longer timeseries regarding the fleet sizes and/or sales. However, when comparing the BAU sce-

narios for e-scooters and e-bikes, e-bikes and the raw materials contained in their batteries are 

economically more important, with volumes almost 10 times greater, even without considering 

the fact that the e-bike batteries are typically larger than the e-scooters’. 

 

We have used the Bass model (Lilien et al., 2000) and e-bike densities from different European 

countries to forecast the number of e-bikes in Finland. The logic of this model implies that the 

number of e-bikes will increase significantly. However, this is an extrapolation from a partially 

observed sales curve, and thus, there is a risk that the model may be misspecified. 

 

We did not model privately owned e-scooters and shared e-bikes, since the number of shared e-

bikes is minor in Finland and there is very little data on the ownership of private e-scooters. This 

is a major knowledge gap, and especially their future numbers might become significant. It seems 

that the uptake of private e-scooters has generally been studied little and constitutes an important 

research and data gap. Moreover, the effect of the battery lifetime is the largest source of uncer-

tainty for both e-scooters and e-bikes. This constitutes another research gap, and to our 

knowledge, little data is publicly available. 
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Figure 3. Simulation results for e-bikes. These results show the outflow of used batteries 

from private e-bikes in Finland. In all panels, the bold line is the BAU scenario, whereas the 

other two lines are the two scenarios corresponding to low and high alternative parameter val-

ues. The e-bike lifetime has been left out this figure because it has a negligible effect. 

4. CONCLUSIONS 

We built a dynamic material flow analysis model for electric micromobility devices in Finland. 

The model was combined with scenarios regarding device and battery lifetimes, vandalism rate, 

number of batteries per device, and future fleet or market size. The outflow of used batteries from 

e-scooters settles to some 25,400 units in the BAU scenario, and the outflow of used batteries 

from e-bikes to some 217,000. While there is unavoidable uncertainty in these figures, it is evident 

that battery lifetime and the projected fleet or market size are the most important factors in mod-

elling the urban mining potential of micromobility. 
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