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SHORT SUMMARY 
 
The street-level built environment (BE) describes the micro-environment we experience along 
paths and streets, such as greenness, slope, walking/cycling infrastructure, and motor vehicle 
traffic. With greater availability of street-level BE data, there is an emerging body of empirical 
literature linking street-level BE with mode choice. A common method for developing BE 
predictors for mode choice is to aggregate attributes along estimated routes between the trip 
origins and destinations. However, the requirement to pre-specify routing parameters has 
methodological and behavioural inconsistencies that could cause an underestimation of the 
significance and influence of street-level BE. This study proposes a method in which routing 
parameters adapt dynamically to the estimated BE predictors during maximum likelihood 
estimation. With a demonstration for Greater Manchester, we show that this method produces 
plausible outputs that can more effectively capture the influence of the street-level BE on 
behaviour. 
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1. INTRODUCTION 
 
There is a large and growing body of empirical research linking the street-level built environment (BE) 
with walking and cycling (Owen et al., 2004; Cervero et al., 2019; Cain et al., 2017). For example, 
dedicated infrastructure and urban greenspace is often positively associated with walking and cycling, 
while steep gradients are negatively associated with cycling (Grudgings et al., 2023; Lovelace et al., 
2017; Lu et al., 2018, 2019). Logistic regression models including mode choice are a common tool for 
empirically estimating the influence of street-level BE on active travel. 
 
When incorporating BE into mode choice, most studies use location-based predictors which describe 
the area around the trip origin, destination, and/or household. These are simple to develop but vulnerable 
to the modifiable aerial unit problem, with their size and scale influencing modelled relationships 
(Strominger et al., 2016; Labib et al., 2020). They do not capture BE along the journey between the 
origin and destination, which is an important component in decision-making. 
 
Route-based predictors describe the street-level BE along estimated routes between origins and 
destinations. They evaluate BE as an indicator of impedance, consistent with the way perceptions of 
impedance are captured for other modes (e.g., cost and waiting time for public transport). However, a 
key methodological limitation is the assumption about which route to evaluate. Most studies evaluate 
the shortest or fastest path (Rodrı́guez & Joo, 2004; Winters et al., 2010; Grudgings et al., 2023). 
However, this could be a poor indicator of what is actually available for the trip, particularly since 
cyclists and pedestrians often deviate from the shortest path to use more suitable infrastructure (Dalton 
et al., 2015).  
 
Alternatively, one could use ‘optimal’ paths based on a route choice model, as in Broach and Dill (2016). 
This offers a more empirical basis but chosen route data has limitations regarding data availability and 
selection bias. In Broach and Dill’s results, the estimated BE coefficients from their mode choice model 
differed substantially from the BE coefficients used to prepare ‘optimal’ paths. This reveals a crucial 
methodological limitation: fixed-route BE predictors require assuming sensitivities to the street-level 
BE for an analysis which aims to measure those same sensitivities empirically. In other words, the input 
routing assumption becomes contradicted by the results. Given these limitations, using fixed-route 
indicators could underestimate the significance and influence of the BE. 
 
To address the limitations of using a single route, several studies defined buffer regions around the 
shortest route to estimate BE predictors (Badland et al., 2008; Winters et al., 2010; Cole-Hunter et al., 
2015; Cervero et al., 2019). These approaches are more likely to capture relevant routes in their 
predictor, but they also capture many irrelevant routes which adds noise and makes results difficult to 
interpret. Furthermore, results from buffer-based analyses have proven highly sensitive to the buffer 
extent (Sarjala, 2019). 
 
This study presents a new methodology for incorporating street-level BE predictors into mode choice 
utility. We define route-based indicators that eliminate the requirement for fixed assumptions about 
which route to evaluate. Rather than specifying the routing BE sensitivities beforehand, we assume they 
should match the BE sensitivities being estimated in the mode choice model. This calls for a dynamic 
estimation process which incorporates least-cost path (LCP) calculations into maximum likelihood 
estimation (MLE). With each iteration of the MLE, new routing parameters are taken from the current 
mode choice coefficients and used to recalculate the LCP and corresponding cost for each diary record. 
This paper examines the feasibility of this dynamic approach regarding convergence of the non-
differentiable MLE, interpretation of empirical results, computational considerations, and differences 
versus fixed-route methods. 
 
  



2. STUDY AREA 
 
We test our methodology for Greater Manchester in north-west England. We use travel diary data from 
their local authority, Transport for Greater Manchester (TfGM), containing 7576 commute trips and 
13536 discretionary trips. 
 
A multimodal transport network enriched with link (i.e., street segment) level BE attributes was 
developed from multiple sources using the methodology in Labib et al (2022). We include four link-
level BE attributes in this study, which are described in table 1 with example maps in figure 1. These 
attributes are continuous and defined such that lower values indicate better conditions. 
 
Table 1: Link-level BE attributes 

Street-level 
attribute 

Description Lower bound Upper bound 

Gradient Elevation increase divided by link length 
(meters / meters) 

0 (flat or 
downhill) 

0.5 (slope ≥ 45º) 

Greenness Viewshed greenness visibility index 
(VGVI) at eye level. Modelled using data 
on terrain, surface, land use, and land 
cover. Further details in Labib et al 
(2021). 

0 (high green 
visibility with 
VGVI ≥ 0.9) 

1 (no green 
visibility with 
VGVI = 0) 

Link stress Discomfort associated with travelling 
alongside motor vehicles. Modelled using 
data on pedestrian/cycle infrastructure, 
speed limits, observed speeds, traffic 
volumes, and heavy vehicle infrastructure. 
Further details in Staves et al. (2023) 

0 (low stress, e.g., 
offroad paths, 
quiet roads) 

1 (high stress, 
e.g., faster and/or 
busier roads with 
no dedicated 
infrastructure) 

Junction 
stress 

Discomfort associated with crossing 
motor vehicles at junctions. Modelled 
using data on pedestrian/cycle/car signals, 
speed limits, observed speeds, junction 
widths and traffic volumes. Further details 
in Staves et al. (2023) 

0 (low stress, e.g., 
crossing slower 
roads with 
dedicated 
pedestrian/cycle 
signals) 

1 (high stress, 
e.g., crossing fast 
or busy junctions 
without signals)  

 
  



 

 

 
FIGURE 1: Examples of link-level BE attributes for Greater Manchester including bicycle 
link stress, viewshed green visibility index, and pedestrian junction stress (defined by the 
stress of junction at the end of each link). 
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3. METHODOLOGY 
 
Cost 
For each mode we define a function of impedance, or cost 𝑐!, for each link 𝑙 on the network  
  

𝑐! = 𝑡!(1 + 𝜸𝒂𝒍) 
 
Where 𝑡! is travel time, 𝒂𝒍 is a vector of link-level BE attributes for walking and cycling (𝒂𝒍 = 𝟎 for 
other modes), and 𝜸 is the corresponding vector of coefficients describing the equivalent travel time 
penalty for a marginal increase in 𝒂𝒍. The total cost 𝑐# of a route 𝑟 is the sum of individual link costs: 
 

𝑐# =*𝑐!
!∈#

=*𝑡!(1 + 𝜸𝒂𝒍)
!∈#

 

 
 
Mode Choice Utility 
We specify multinomial logit mode choice models for commute and discretionary trips.  
Utility 𝑉$,&' for trip 𝑛 from origin 𝑖 to destination 𝑗 is defined as 
 

𝑉%,'( = 𝜷)𝒃%	 + 𝛽+𝐿(𝜸)'( 
 
Where 𝒃$	 is a vector of person, household, and trip attributes, 𝜷) is the corresponding vector of 
coefficients, 𝛽* is the cost coefficient, and 𝐿(𝜸)&' is the cost 𝑐# of the LCP between 𝑖 and 𝑗. We use 
MLE to estimate 𝜷+ and 𝛽* for all modes and 𝜸 for the active modes. Since 𝜸 is within the LCP function 
𝐿(𝜸)&', this function must be integrated into the MLE process. 
 
 
Properties of the LCP Function 
A conceptual illustration of the relationship between 𝐿(𝜸) and 𝜸 is presented in figure 2. For simplicity, 
this example shows one dimension of BE and three single-link paths. As shown in the graph, any of 
these paths could be the LCP depending on the decision-maker’s sensitivity 𝛾 to the BE attribute 𝑎!. As 
𝛾 increases, the decision-maker becomes more willing to accept longer travel times for higher-quality 
BE. 
 

 
FIGURE 2: Conceptual illustration showing the relationship between 𝐿(𝛾) and 𝛾. 
 

(1) 

(2) 
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The LCP function 𝐿(𝛾) is shown as a purple dashed line in figure 2. It has several properties with 
implications for mode choice utility and MLE. It is continuous and non-linear but made up of linear 
segments. The slope of 𝐿(𝛾) is always positive and remains constant or decreases as 𝛾 increases. 
However, it is non-differentiable with respect to 𝛾, making it impossible to compute analytical gradients 
during MLE. Generalising to multiple dimensions, 𝐿(𝜸) becomes a continuous nondifferentiable 
hypersurface made up of many hyperplanes, each representing a plausible route. The gradient of the 
hypersurface is highest at the origin and may reduce as any dimension of 𝛾 increases. 
 
 
Approximating the LCP function for MLE 
Existing MLE choice modelling packages cannot incorporate an LCP search. We therefore pre-calculate 
approximations for 𝐿(𝜸) which are coded into the MLE via a custom function. For each trip record, an 
approximated hypersurface 𝐿5(𝜸) is calculated using the following process: 
 

1. Define an empty hypersurface 𝐿5(𝜸) ∶= ∞		∀𝜸, 
2. Define constraints for 𝜸, 
3. Randomly sample values of 𝜸 within the constraints, 
4. For each sample: 

a. Use the Dijkstra algorithm to estimate the LCP based on equation 1, 
b. Compute the cost of the LCP and its partial derivatives with respect to 𝛾. This 

defines the hyperplane ℎ(𝜸) associated with this route. 
c. Redefine 𝐿5(𝜸) ∶= min>𝐿5(𝜸), ℎ(𝜸)@	∀𝜸 

 
The approximated hypersurface is only valid within the prespecified constraints for 𝜸. If the MLE 
produces estimates for 𝜸 outside this range, it would be necessary to either constrain the MLE 
optimisation or expand the constraints for 𝐿5(𝜸). The geometric properties of 𝐿5(𝜸) allow for a close 
approximation (within the specified constraints), given sufficient samples. 
 
This study uses the Dijkstra LCP algorithm from MATSim (Horni et al., 2016), which is compute-
optimised to efficiently calculate LCPs for a high volume of inputs. 
 
 
Model Estimation 
The empirical estimation uses the Apollo choice modelling suite in R (Hess & Palma, 2019). The MLE 
optimisation was run unconstrained using the Broyden–Fletcher–Goldfarb–Shanno algorithm with 
numerical gradients. Insignificant coefficients (robust p > 0.1) were dropped. 
 
 
Comparison to Fixed Route Method 
We compared our results to equivalent fixed-route specifications based on the shortest path. This 
converts utility into a linear function, with the specifications otherwise kept identical.  



4.   RESULTS AND DISCUSSION 
 
LCP Function Approximation 
For a travel diary with 21112 records total, the computation of 𝐿5(𝛾) took around 50 seconds per sample 
on a desktop workstation with an 8-core Intel Xeon 2.6HGz CPU with 64GB RAM. This study 
calculated 2500 samples for walking and cycling. Beyond this, additional samples led to only a small 
share of records (< 1%) discovering new LCPs, indicating a close approximation. 
 
 
Empirical Model Results 
Both MLE estimations successfully converged to a global optimum after 68 and 126 iterations 
respectively. Empirical model results are shown tables 2 and 3. Sociodemographic attributes 𝜷)	follow 
expected patterns; for example, males and higher income individuals are more likely to drive and 
females are less likely to cycle. The BE coefficients 𝜸 generally reveal high sensitivities to the street-
level BE. For cycling, each percent increase in uphill gradient is equivalent to a 63-67% time penalty. 
Cycling on stressful paths is equivalent to as much as a 630% penalty versus low-stress paths.  These 
results are high but similar to findings in Broach and Dill (2016). For walking, the junction stress 
coefficient was as high as 14, suggesting individuals are willing to walk up to 14 times the width of a 
stressful junction for a better (e.g., signalised) alternative. For non-commute trips, walking on links 
without green visibility incurs up to a 62% time penalty versus the greenest links. 
 
To test the plausibility of results, we computed the trip-level detours required to use the LCP based on 
estimated 𝜸. The average detours for cyclists were 19% for commutes and 22% for non-commutes, 
which is within the typical range observed in cycling route choice studies (Reggiani et al., 2022). 
However, average detours for pedestrians were only 1% for commutes and 3% for discretionary trips, 
which is smaller than observed in pedestrian route choice literature (Sevtsuk et al., 2021; Sevtsuk & 
Kalvo, 2022). Including more pedestrian-relevant BE attributes could help capture more realistic 
walking detours. 
 
 
Comparison to Fixed Route Method 
We do not show the full fixed-route results but provide a brief comparison. The final log-likelihoods 
were slightly lower, indicating a poorer model fit compared to the dynamic LCP method. Most 
coefficients were similar, except 𝜸 for link and junction stress which became less significant and much 
smaller (only 20-50% of the values on tables 2 and 3). This suggests it is difficult to capture sensitivity 
to stress using only the fastest path. This finding is consistent with commentary in Winters et al. (2010) 
which predicted that using the fastest path likely underestimates the influence of street-level BE. 
 
  



Table 2: Results for Commute Trips 
 

 
Car Driver Car 

Passenger 
Public 
Transport 

Bike Walk 

𝜷! 

ASC  -2.25*** -1.39*** -1.59*** 1.97*** 
Age under 24  1.27*** 1.04*** 1.18*** 1.21*** 
Age 55 and up   -0.33* -0.97***  
Male  -0.37*** -0.35*** 1.21***  
Low income   0.73*** 0.75** 0.98*** 
High income  -0.25* -0.60*** -0.55** -0.62*** 
Education trip  4.22*** 3.17*** 1.35*** 2.50*** 

𝛽" Cost -0.15*** -0.15*** -0.030*** -0.00085*** -0.0019*** 

𝜸 
Gradient (∆𝑚/𝑚)    66.8***  
Link stress    6.30***  
Junction stress     4.27*** 

Log-likelihood at equal shares: -12166, Final log-likelihood: -6997, Adj. r2: 0.4223 
Robust p-value: *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05, . p ≤ 0.1 
 
Table 3: Results for Non-commute Trips 

 
 

Car 
Driver 

Car 
Passenger 

Public 
Transport 

Bike Walk 

𝜷! 

ASC  -0.17** -1.67*** -3.71*** 2.46*** 
Age 5–14  16.08*** 14.92*** 14.57*** 14.41*** 
Age 15–24  1.52*** 2.24*** 1.97*** 1.85*** 
Age 40–69  -0.20** 0.19. -0.41* -0.46*** 
Age 70+  0.23** 0.65*** -1.73*** -0.95*** 
Male  -1.12*** -0.61*** 0.94*** -0.22*** 
Low Income   1.17*** 1.05*** 1.01*** 
High Income  -0.30*** -0.49***   

𝛽" Cost -0.21*** -0.21*** -0.051*** -0.00092*** -0.0016*** 

𝜸 

Gradient (∆𝑚/𝑚)    63.45***  

Greeness     0.62** 
Link stress    1.59***  
Junction stress     14.34*** 

Log-likelihood at equal shares: -21774, Final log-likelihood: -12952, Adj. r2: 0.403 
Robust p-value: *** p ≤ 0.001, ** p ≤ 0.01, * p ≤ 0.05, . p ≤ 0.1 
 
 
  



5.   CONCLUSIONS 
 
This paper demonstrates the feasibility of incorporating dynamic LCP functions into mode choice utility 
to assess the influence of street-level BE. Despite introducing non-linearity and non-differentiability 
into MLE, the proposed method successfully converges and produces plausible empirical results with 
higher BE sensitivities than fixed-route methods. 
 
The model specifications and results serve as a proof of concept rather than an informative empirical 
analysis. Our focus is on the integration of a dynamic LCP function into mode choice utility, so this 
demonstration applied a simple MNL model framework with a limited number of predictors. We 
recognise many limitations associated with this specification including the i.i.d. assumption meaning it 
cannot account for correlated alternatives and/or observations, the lack of key sociodemographic 
predictors such as car ownership, and the assumption of homogenous tastes toward street-level BE. To 
address these shortcomings, a more advanced empirical analysis could expand this methodology using 
additional predictors, nesting structures, interaction variables, random parameters and/or latent classes. 
 
The need to approximate 𝐿5(𝜸) is a limitation. It requires pre-specifying constraints for 𝜸 that would 
need to be re-defined if MLE results exceed them. This could prove time-consuming for the analyst, 
who may have to iterate several times between approximating 𝐿5(𝜸) and testing model specifications. 
The approximation is computationally expensive, particularly if the sampling space and dimensionality 
are high. In addition, the approximation requires impedance 𝑐! to be specified as a linear combination 
of 𝒂𝒍 and 𝜸 (see equation 1). Examining more advanced relationships between the BE and impedance 
would require adapting this methodology likely reducing the quality of the approximation. 
 
The approximation could be eliminated entirely by integrating an efficient LCP algorithm directly into 
the MLE algorithm. There would be no need to specify constraints or pre-calculate 𝐿5(𝜸), and 𝑐! could 
be specified as any function of 𝜸 provided 𝑐! > 0. It would also substantially reduce computational 
demand: instead of needing enough samples to closely approximate 𝐿5(𝜸) over a range of 𝜸, routes 
would only need to be calculated once per MLE iteration. However, achieving an efficient ‘tighter’ 
integration would be a considerable programming effort requiring low-level integration of LCP and 
MLE algorithms. 
 
Designing urban environments to facilitate walking and cycling is increasingly prioritised by planners, 
modellers, and decision makers. Advances in geospatial science are enabling more widespread and 
detailed collection of street-level BE data, providing increasing opportunities to incorporate BE into 
empirical work and simulations. The dynamic method proposed in this study has considerable potential 
to advance the way we model the impacts of street-level BE on travel behaviour and can help modellers 
to more effectively capture its influence on active travel decisions. 
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