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Short summary

In response to the rapidly evolving urban landscape, there is a growing demand to enhance tradi-
tional Origin-Destination Matrices Estimation (ODME) models with new data sources that offer
broader perspectives. Crowd-sourced data, in particular, can provide promising avenues for col-
lecting high-resolution data on destination activities, reflecting real mobility patterns. Previous
research investigates trip motivations and the varying travel flexibility associated with different
activities, leveraging real-world crowd-sourced data like Floating Car Data (FCD) and Google
Popular Times (GPT).

To address the need to integrate these insights into ODME models, this paper introduces the Flex-
GLS approach, an extension of the GLS model that accounts for multiple demand components
characterized by spatio-temporal flexibility metrics derived from crowd-sourced data. It aims to
offer a more precise representation of travel demand by integrating both temporal and spatial
flexibility dimensions. Benchmarking against the traditional GLS model highlights the potential of
Flex-GLS in enhancing ODME accuracy, providing valuable insights into urban travel dynamics.

Keywords: Crowd-sourced data; Floating Car Data; OD Matrices Estimation; Spatio-temporal
Flexibility; Trip Purpose.

1 Introduction

In response to the challenges posed by the rapidly evolving urban environment, there is an emerging
need to supplement traditional Origin-Destination Matrices Estimation (ODME) models with data
sources that can offer broader and more insightful perspectives (Cantelmo et al., 2014). While tra-
ditional fixed-location data collection tools have been foundational in establishing reliable metrics
of traffic flows, such as vehicle counts, speeds, and densities, they often do not fully encompass the
complexity of urban mobility, leading to an incomplete representation of the multifaceted nature
of travel demand (Carrese et al., 2017).

Emerging technologies and in particular crowd-sourced data – which includes mobile phone data,
GPS-based data, and social media analytics – offer promising avenues for gathering high-resolution
data that reflects the actual travel patterns of urban travelers and can significantly enrich ODME
models. In particular, the integration of location-based crowd-sourced data (Timokhin et al., 2020)
into ODME models can offer significant insights into the activities users engage in at destination
or the purpose of their trips.

In an earlier work Castiglione et al. (2024), the authors investigated the motivations behind people’s
trips, estimating how travel flexibility varies in relation the nature of activities at their destinations,
leveraging crowd-sourced data such as Floating Car Data (FCD) and Google Popular Times (GPT).
The evaluation of flexibility parameters computed for each user within the FCD dataset has revealed
variability both across and within activity types, as well as over different time frames. This
variability enhances the depth of the analysis, allowing for detailed estimations of spatio-temporal
flexibility for different components of travel demand.

Four demand components C have been identified, each associated with a specific level of temporal
and spatial flexibility, represented by a set of nt sample OD matrices. These matrices are derived
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through the aggregation of FCD trips, categorized based on comparable values of spatio-temporal
flexibility. The evidence from earlier research highlights the necessity of integrating the insights
obtained from crowd-sourced data into the framework of traditional dynamic ODME models, such
as the Generalised Least Squares (GLS) (Cascetta et al., 1993) model.

This paper introduces the Flex-GLS approach, a novel extension of the GLS model that is designed
to account for multiple demand components characterised by spatio-temporal flexibility metrics
derived from real-world, crowd-sourced data. This model aims to offer a more accurate represen-
tation of travel demand by integrating both temporal and spatial flexibility dimensions, thereby
better reflecting the complex dynamics of urban travel.

The paper is organized as follows: the ’Methodology’ section describes the Flex-GLS model, de-
tailing its theoretical foundations based on the concepts of Temporal and Spatial Flexibility. The
’Results and Discussion’ section presents numerical applications of the model, analyzing its perfor-
mance against the standard GLS. Finally, the ’Conclusions’ section summarizes the findings and
suggests future research directions.

2 Methodology

Given nt×nC sample Origin-Destination (OD) matrices, each cell of these matrices represent trips
from origin O to destination D within a time interval t belonging to a component of travel demand
C, obtained from the aggregation of crowd-sourced data based on shared spatio-temporal flexibility
values σC , as done in Castiglione et al. (2024).

Here, Temporal Flexibility (TF) indicates the degree to which an individual can adjust the timing
of their activities, whereas Spatial Flexibility (SF) denotes the extent to which an individual can
vary the locations of their activities. In this context, the traditional Generalized Least Squares
(GLS) formulation, as referenced by (Cascetta et al., 1993), is extended to encompass multiple
demand components C, each characterized by its unique spatio-temporal flexibility distribution
σC . The modified objective function formulation is provided as follows:

d∗ = argmin
d∗

(∑
t

(∑
l

wl · (vl(d∗)− v̂l)
2 +

∑
od

∑
C

wC · (d∗od,C − d̂od,C)
2

))
(1)

Here, vl(d
∗) denotes simulated traffic flows from estimated demand d∗, against observed traffic

counts v̂l. The demand matrix d∗, segmented into C components where d∗od,C indicates demand
for each origin-destination pair per component, while d̂od,C is the seed matrix for each demand
component obtained from the classified FCD in Castiglione et al. (2024). The weights wl and wC

are assigned based on the inverse of traffic counts and demand component variances, respectively.

Extending the GLS method to encompass multiple demand components, while conceptually sim-
ple, adds significant complexity to the estimation process, particularly in large urban networks.
This approach greatly increases the number of variables in the already intricate ODME problem,
escalating computational demands.

To manage this complexity, the Flex-GLS takes advantage of the fact that the total demand d∗ is
the sum of all the individual components d∗od,C , leveraging conditional probabilities to model them
as a unified variable. This method keeps variable count manageable and ensures computational
feasibility. In the Flex-GLS model, the demand for each origin-destination (od) pair and time
interval (t) is estimated, then, each individual demand component is adjusted using temporal and
spatial flexibility metrics.

Like the traditional GLS, the Flex-GLS model is an iterative optimization procedure that begins
with an Initialization phase to set parameters for the ODME model, followed by the Assignment
phase for allocating the estimated demand across the network. Given the observed traffic counts,
the model applies a Gradient Descent algorithm, guided by the function in Equation (1), to fine-
tune the demand.

Demand components are defined as:
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Figure 1: Flex-GLS Flowchart

d∗C,t,od = p∗C(t)× d∗t,od (2)

pC(t) =
dC,t∑
t dC,t

(3)

Where p∗C(t) is derived from the classified FCD sample OD matrices. The objective function is
reformulated as:

d∗ = argmin
d∗

(∑
t

(∑
l

wl · (vl,t(d∗)− v̂l,t)
2 +

∑
od

∑
C

wC · (p∗C(t)× d∗t,od − d̂C,t,od)
2

))
(4)

The Flex-GLS uses a gradient descent algorithm to minimize the objective function. At each
iteration k, the demand is updated as follows:

d
∗(k+1)
t,od = d

∗(k)
t,od − α ·

∂

∂d∗t,od

∑
od

∑
t

wl,t ·
(
vl,t (d

∗)− v̂l,t
)2

+ wC ·
(
p∗C(t) · d∗t,od − d̂C,t,od

)2 (5)

with α as the learning rate.

The first term of the gradient, which accounts for discrepancies in traffic flows, adheres to the
traditional GLS approach. As for the second component of the gradient, it is important to recognize
that, as the demand components d∗C are not independent variables, but rather a function of the
total demand d∗ and the corresponding proportion for component C at time t, denoted as P ∗

C(t),
the gradient descent update rule at iteration k for each demand component is formulated as:

∂

∂d∗

(
wC ·

(
P ∗
C(t) · d∗t,od − d̂C,t,od

)2)
= 2 ·

1

σC
·
(
P ∗
C(t) · d∗t,od − d̂C,t,od

)
· P ∗

C(t) (6)

The weights wC are modulated to be the inverse of the variance of each component’s demand
(wC = 1

σC
), thereby emphasizing the impact of variations in the more rigid demand components

within the objective function. This is due to their smaller variance, which inherently discourages
large fluctuations in the less flexible demand components.

Post-estimation, the model enters the demand Components Adjustment phase to recalibrate p∗C(t)
for each demand component based on flexibility metrics, to ensure alignment with the newly
estimated demand. If the evaluation of the objective function achieves satisfactory convergence,
the process concludes; otherwise, it cycles back to the assignment phase. The overall process is
illustrated in Figure 1, which highlights the Gradient Descent and Components Adjustment steps
as they represesent the phases that diverge from the traditional GLS approach.

After each Gradient Descent step, the Flex-GLS refines the individual demand components through
a constrained Maximum Likelihood Estimation (MLE) problem, utilizing prior probabilities PC(t)
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and variances σ2
C based on seed FCD data. Updated at each iteration, these probabilities align

with the total demand d∗. The model’s total likelihood, Ltotal, is computed as the logarithm of
individual component likelihoods.

The MLE constraints in Flex-GLS aim to maintain consistency with the observed data. The first
constraint (Eq. 7) ensures the sum of probabilities P ∗

C(t) for all components C equals one at each
od pair and time interval t: ∑

C

P ∗
C(t) = 1, ∀t ∈ T, ∀od (7)

A second constraint (Eq. 8) maintains the temporal consistency of demand components’ propor-
tions, both pre- and post-estimation:∑

t∈T dC,t,od∑
t∈T dt,od

≈
∑

t∈T d∗C,t,od∑
t∈T d∗t,od

∀C,∀od (8)

The model accommodates variation ϵ in demand component ratios to reflect flexibility, with lower
ϵ for rigid components and higher for flexible ones. This Temporal constraint dictates that the
demand components proportions within time interval t can be adjusted according to the flexibility
levels, but maintain overall consistency within the broader temporal window T .

For instance, we can consider the example of commuters whose usual departure time is 8:00 am.
Their temporal flexibility might allow to change their departure time within a narrow window,
such as 7:45 to 8:15, as opposed to users traveling for different purposes (e.g. shopping) who may
exhibit a broader flexibility window. This highlights the importance of an accurate definition of
the time window T in capturing variations in travel behavior.

Similarly, Spatial Flexibility involves re-distributing the demand generated from one origin O within
the same time interval across various destination, maintaining consistency in generated demand
component proportions. The constraint for Spatial Flexibility is as follows:∑

d dC,t,od∑
d dt,od

≈
∑

d d
∗
C,t,od∑

d d
∗
t,od

∀C, ∀t (9)

In the Flex-GLS model, Temporal and Spatial Flexibility are treated as complementary. The
constraints for the joint spatio-temporal MLE problem are redefined as follows:

∑
C

P ∗
C(t) = 1, ∀t ∈ T, ∀od∑

t∈T

∑
d d

∗
C,t,od∑

t∈T

∑
d dt,od

≈
∑

t∈T

∑
d d

∗
C,t,od∑

t∈T

∑
d d

∗
t,od

, ∀C,∀t ∈ T, ∀d
(10)

The demand component constraints in the Flex-GLS model can be visualized as a matrix segmented
into blocks across od and t dimensions. The constraints for temporal and spatial flexibility deter-
mine the size and overlap of these blocks: rigid demand components are represented by smaller,
closely overlapping blocks, exemplified by the limited departure time or destination choice flexi-
bility . In contrast, blocks representing flexible demand components are larger, spanning multiple
time intervals, indicative of looser constraints and a broader range of departure time flexibility as
well as destination choices.

3 Results and discussion

A systematic comparison is conducted for benchmarking purposes, to assess the Flex-GLS model
against the conventional GLS model across various scenarios. The underlying hypothesis posits
that Flex-GLS, as a generalization of GLS, offers improved accuracy in estimation, particularly
when the demand components’ proportions obtained through crowd-sourced data aligns closely
with reality.
The benchmarking tests use a network with one origin and two destinations (Figure 3), focusing on
spatial flexibility across different demand components in a single time interval. This setup allows
for the exploration of three distinct comparative scenarios:
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Figure 2: Representation of the constraints blocks within a demand component matrix

Figure 3: Benchmarking Analysis Network

1. Scenario 1: High congruence between seed and real demand matrices as well as in component
ratios.

2. Scenario 2: Divergence in total seed demand from actual demand, but similarity in compo-
nent proportions.

3. Scenario 3: Close match in total seed and real demands, but significant differences in com-
ponent ratios.

Each scenario offers insights into the models’ performance and adaptability, using a "real" demand
as a baseline for comparison, which, while not directly observable, represents the actual demand
generating the traffic counts on the network.

Table 1: Real Demand and Detected Counts
OD Pair Real Demand Rigid Real Demand Flex Real Demand Detected Counts

OD1-1 50 45 5 150OD1-2 100 45 55

The seed demand matrix, as outlined in Table 1, serves as the foundation for each scenario,
constructed by introducing perturbations to the real demand (or its demand components) with
differing levels of noise.

Scenario 1: High Reliability of both Total and Component Seed Demand

In this scenario, seed demand and its components closely match the actual demands with minor
perturbations introduced: up to ±3% for the rigid component and ±10% for the flexible component
to reflect their inherent stability and variability, respectively.
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Table 2: Scenario 1: Seed Demand and Initial Flows
OD ID Seed Demand Rigid Seed Demand Flexible Seed Demand Initial Flows

OD1-1 49 44 5 140OD1-2 91 43 48

In this scenario, the Flex-GLS model demonstrates enhanced performance compared to GLS. This
is evidenced not just in terms of accurately reproducing network flows but also in effectively
estimating the total demand. Additionally, it proves more adept in estimating the individual rigid
and flexible demand components, as indicated by the comparative RMSE values summarized in
the following table:

Table 3: Scenario 1: GLS and Flex-GLS RMSE Comparison
RMSE GLS Flex-GLS

Detected Counts vs. Simulated Flows (Initial) 9.200838 9.200838
Detected Counts vs. Simulated Flows (Final) 3.067084 1.086609
Real vs. Seed Demand 5.983042 5.983042
Real vs. Estimated Demand 4.121249 3.316182
Seed vs. Estimated Demand 3.066877 4.094755
Rigid Real vs. Rigid Seed 1.584283 1.584283
Rigid Real vs. Rigid Estimated 1.603394 0.847237
Flexible Real vs. Flexible Seed 4.435897 4.435897
Flexible Real vs. Flexible Estimated 3.282010 2.993162

The comparative RMSE values further illustrate the Flex-GLS model’s superior ability to adjust
demand estimations accurately, showcasing its nuanced handling of demand component variability
and stability.

Scenario 2: Low Reliability of Total Seed Demand and High Reliability of
Component Demand

Scenario 2 tests the Flex-GLS model’s accuracy in component-wise demand estimation under con-
ditions where total seed demand significantly deviates from actual demand, yet component struc-
tures remain aligned with reality. Real demand components are adjusted with random noise (±3%
for rigid, ±10% for flexible components) before inflating total seed demand by 30%, maintaining
component ratio integrity.

Table 4: Scenario 2: Seed Demand and Initial Flows
OD ID Seed Demand Rigid Seed Demand Flexible Seed Demand Initial Flows

OD1-1 70 57 13 208OD1-2 138 61 77

The Flex-GLS model demonstrates improved performance over the GLS in flow reproduction and
demand estimation, including individual demand components.

Table 5: Scenario 2: GLS and Flex-GLS RMSE Comparison
RMSE GLS Flex-GLS
Detected Counts vs Simulated Flows (Initial) 58.280870 58.280870
Detected Counts vs Simulated Flows (Final) 19.427832 5.855703
Real Demand vs Seed Demand 29.968099 29.968099
Real Demand vs Estimated Demand 11.970053 4.311141
Seed Demand vs Estimated Demand 19.426519 26.490912
Rigid Real Demand vs Rigid Seed Demand 13.842191 13.842191
Rigid Real Demand vs Rigid Estimated Demand 4.009714 2.703550
Flexible Real Demand vs Flexible Seed Demand 16.800260 16.800260
Flexible Real Demand vs Flexible Estimated Demand 8.693669 6.433310
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This showcases the Flex-GLS model’s robustness and precision in estimating demands, even when
facing significant discrepancies between seed and actual demands, emphasizing its capability to
effectively reconcile component-wise estimations.

Scenario 3: High Reliability of Total Seed Demand, Low Reliability of Compo-
nent Demand

Scenario 3 evaluates the model’s performance with accurate total seed demand but inaccurate
component distributions, testing the Flex-GLS model’s precision in estimating demand components
under these conditions.

Table 6: Scenario 3: Seed Demand and Initial Flows
OD ID Seed Demand Rigid Seed Demand Flexible Seed Demand Initial Flows

OD1-1 49 8 41 151OD1-2 102 7 95

The RMSE values for the GLS and Flex-GLS in Scenario 3 are as follows:

Table 7: Scenario 3: GLS and Flex-GLS RMSE Comparison
RMSE GLS Flex-GLS
Detected Counts vs Simulated Flows (Initial) 2.233991 2.233991
Detected Counts vs Simulated Flows (Final) 0.744697 0.250565
Real Demand vs Seed Demand 1.754590 1.754590
Real Demand vs Estimated Demand 1.403406 12.125056
Seed Demand vs Estimated Demand 0.744647 10.842700
Rigid Real Demand vs Rigid Seed Demand 37.297531 37.297531
Rigid Real Demand vs Rigid Estimated Demand 37.385913 36.649881
Flexible Real Demand vs Flexible Seed Demand 38.471518 38.471518
Flexible Real Demand vs Flexible Estimated Demand 37.815052 36.087185

In this scenario, the Flex-GLS model underperforms, leading to high RMSE values in demand
comparisons, indicating substantial inaccuracies in the estimation. This scenario, however, wants
to represent an extreme case, emphasizing that the Flex-GLS is most effective when reliable data
on the structure of individual demand components, such as those derived from crowd-sourced data,
is available. If such data is unreliable or absent, a hybrid approach incorporating elements of both
GLS and Flex-GLS might be advisable, particularly in less extreme scenarios.

4 Conclusions

This paper introduces a new extension of the GLS ODME framework to include crowd-sourced data.
The Flex-GLS model is tested on three scenario-based evaluations, which reveal the applicability
of the model under different conditions.

When the seed demand matrices closely mirror the real demand, as in Scenario 1, the Flex-GLS
model demonstrates its capability to harness the structural insights of the data, yielding estimations
with remarkable accuracy to the observed traffic conditions. The model’s superior performance in
this scenario underscores its potential in contexts where the empirical data is robust and the ratios
between demand components are reliable.

Scenario 2 introduces a challenge where the total seed demand is very perturbed, yet the Flex-
GLS model adeptly adjusts the demand estimations, attesting to its resilience when the individual
components structure is mantained. This scenario exemplifies the model’s robustness against large-
scale deviations in overall demand while preserving the integrity of component-specific estimations.

However, the model’s sensitivity to the reliability of component structures becomes apparent in
Scenario 3. When the component demands are significantly misaligned with actual demands, the
Flex-GLS model’s estimations become less reliable, resulting in elevated RMSE values despite the
seed demand being very close to the real demand. This outcome cautions against the Flex-GLS’s
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use in the absence of dependable data on the structure of the individual demand components.
However, it is important to note that the insights obtainable from crowd-sourced data align with
these requirements.

Ultimately, the outcomes from these scenarios guide the strategic selection of the most appropriate
modeling approach, advocating for the Flex-GLS when detailed, reliable crowd-sourced data is
available, and for the standard GLS in less certain data environments.
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