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SHORT SUMMARY 

Mode choice is the result of selecting the most convenient mean(s) of transport among all options 
available to reach locations where daily activities are performed. Trips made by individuals are 
enchained, making mode choice an interconnected process, especially considering the spatial con-
nections and temporal constraints to reach the different activity locations. This paper proposes a 
methodology to estimate ativity and mode-specific dynamic OD trips, based on the economic and 
behavioural principle of utility maximization. The proposed modelling approach aims at preserv-
ing the link between individual trips, while limiting combinatorial explosion of choices when 
considering individual trip chains. This approach is applied at a zonal scale and relies on observed 
aggregated OD trips and travel times by mode as main input data. The model parameters are 
estimated through Markov Chain Monte Carlo sampling and Bayesian updating techniques, 
hence, instead of calculating only expected values, each parameter is described by a probability 
distribution, which can represent and incorporate in the model the heterogeneity of population 
activity-travel behaviour. This model is tested on multi-day travel diary data collected in the city 
of Ghent, Belgium, containing around 15000 trips classified by four main activity types and four 
alternative modes. We show that the proposed model can properly estimate and capture the dy-
namics of modal split and relate these choices to activity participation. 

Keywords: Dynamic demand estimation; utility maximization; Markov Chain Monte Carlo; 
activity-specific OD matrices. 

1. INTRODUCTION 

The estimation and prediction of mode-specific trips is essential to understand the potential ef-
fectiveness of policies aiming to achieve desirable sustainability targets, or to manage the demand 
for resource-limited systems such as transit or shared mobility services. Mode choice is a complex 
process that involves different determinants at various levels (e.g.,  mode convenience, quality of 
service, personal preference, and socio-demographic characteristics) (Tyrinopoulos and Anto-
niou, 2013). Moreover, the mode chosen for an earlier trip has an influence on subsequent deci-
sions, for example because of the consequent (un)availability of transport alternatives at the origin 
or destination of trips.  

Trip chaining and activity scheduling are main determinants of mode choice, with more complex 
tours favouring car use (Currie and Delbosc, 2011), while representing a barrier for public 
transport (Hensher and Reyes, 2000). Tour-based models seem to be the most suited approaches 
to handle correlations in sequential activity and mode choices. Tour-based models usually rely on 
activity-based modelling approaches, where mode choice usually follows an activity scheduling 
model (Miller et al., 2005).  However, considering all feasible mode combinations in tour-based 
models is extremely complex (Vovsha et al., 2017). Besides, application of these models also 
requires very large and detailed data, which are often not available. On the contrary, traditional 
trip assignment-based models are easier to calibrate and continue to be widely adopted for esti-
mating and forecasting the travel demand (McNally 2007). However, they are considered 
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inadequate for incorporating daily activity scheduling and departure time choices, and they usu-
ally provide a too coarse representation of the spatial and temporal dynamics of travel demand 
(Cantelmo et al., 2018).  

Combining trip-based and activity-based model features allows calibration and interpretability 
strengths to be preserved, while offering the opportunity to capture the complexity and heteroge-
neity of individuals’ decision-making processes. Lam and Yin (2001) integrated activity-based 
models with time-dependent traffic assignment in a variational inequality dynamic user equilib-
rium model. To jointly model activity-travel decisions, different choice levels are represented as 
path choice through a space-time expanded network, offering a basis for joint activity-travel as-
signment (Liao, et al., 2013; Liu et al., 2016; Fu and Lam 2018). Dynamic Activity Travel As-
signment models are arguably the most advanced methods for capturing multiple choice dimen-
sions, including mode choice. However, because they use a very complex modelling approach, 
especially in terms of network representation, their computational and modelling complexity can 
grow extremely rapidly.  

In this work we model mode-specific trips from activity-travel choices of a heterogeneous popu-
lation and calibrate them against aggregated traffic data using an iterative Bayesian estimation 
approach. The inputs needed are aggregated time-dependent total daily trips, average travel times 
by origin and destination and by mode, and total activity participation, i.e. expected number of 
individuals performing an activity on an ordinary day. These data are used to calibrate the param-
eters of activity-specific marginal utility functions, coined utility primitives, which are derived 
from utility maximization principles (Cantelmo and Viti, 2019). 

The advantages of this approach are threefold: 

• First, we estimate aggregated mode-specific trips that are consistent with individual mode 
choices and with the observed aggregated demand flows; 

• Second, the primal output can be used as input for applications such as dynamic Origin-Des-
tination (OD) demand estimation and for transport simulation models; 

• Finally, thanks to the adoption of underlying functions representing the marginal utility 
gained by individuals, we can relate the mode choice process to complex decisions such as 
when to schedule activities and the related departure and arrival times. 

The paper is structured as follows. Section 2 describes the methodological approach. Section 3 
describes the data used and the result of the estimation process. Section 4 concludes the paper and 
presents future research directions. 

2. METHODOLOGY 

The core of the model in this work relies on utility maximization principles and the concept of 
utility primitives, which represent the set of activity-specific marginal utility functions driving the 
utility maximization process, at an aggregate (e.g., zonal) level.  

The main idea is to apply the utility for an individual travelling to and performing an activity in a 
certain zone in an aggregated way, i.e. we model the overall utility accumulated by all individual 
performing the said activity in a specific zone or region. Assuming individuals to be utility max-
imisers, they will seek to optimise their travel choices to accumulate the utility of performing the 
daily activities while reducing the costs of travelling to the locations where the activities are to be 
performed. At an aggregated level, this phenomenon can be captured by departure time probabil-
ities, resulting in emergent trip rates, which can in this way be activity and mode-specific. 

This idea allows revealed or observable preferences, such as departure time and mode choices, to 
be formally linked with underlying unobservable characteristics such as (marginal) utility 
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gains/losses when performing the activity. The functional relationship representing the marginal 
utility accumulated in time by an individual performing a specific type of activity at a certain 
location is our definition of utility primitive, which is characterised by a number of calibration 
parameters to be estimated to define the form of the marginal utility function.  

In the following we briefly describe this modelling and estimation process, leaving the details to 
Scheffer et al. (2024). We consider the utility accumulated by an individual travelling from any 
zone 𝑦 to perform specific activity type 𝑎 into zone 𝑧 to be simplified into four components: 1) 
the expected utility of any activity that was being performed at 𝑦 before departing towards zone 
𝑧; 2) the disutility of travelling from zone 𝑦 to zone 𝑧 to perform activity 𝑎; 3) the utility accu-
mulated while performing activity 𝑎 in zone 𝑧; and 4) the utility of performing any other activity 
after stopping to perform activity 𝑎. Hence, the (daily) utility 𝑈%!"  accrued by an individual 𝑖 en-
gaging in activity 𝑎 is formulated as: 
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Where 𝑡/ and  𝑡$ are the starting and ending time of activity 𝑎, respectively; 𝑢!"  is the marginal 
utility function related to activity 𝑎 for individual 𝑖, 𝛥𝑡 is the discrete unit of time and 𝑇 =
{𝑡&, 𝑡& + Δ𝑡, 𝑡& + 2Δ𝑡,… , 𝑡& + (𝑁 − 1)Δ𝑡} the total evaluation period. Finally, 𝑡𝑡→!

+,,. represents 
the travel time (cost) from origin 𝑦 to destination 𝑧 when departing at time 𝑡# using mode m. 
Simply stated, when estimating  the utility primitive specific to activity 𝑎, we must also consider 
the marginal utility of any/all activities performed before 𝑎 (denoted by 𝑎 −), the trip to access 
the activity (denoted by → 𝑎), the marginal utility specific to 𝑎, and the marginal utility of any/all 
activities performed after 𝑎 (denoted by 𝑎 +) in order to capture the tradeoff between performing 
activity 𝑎 as opposed to perform any other activity during a certain time period. This is exempli-
fied in Figure 1, where the total accumulated utility (shaded areas) given a set of departure, start-
ing and ending times is depicted. In the figure, the loss of utility due to travelling is the time 
between the red and the blue vertical lines. 

 
Figure 1 Accumulated utility for a sequence of activities 
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While equation (1) is written for the 𝑖-th individual, it will be applied and estimated in our model 
for a generic individual, hence the superscript 𝑖 will no longer appear, i.e. we will use the terms 
𝑈%!	 and 𝑢!	 from now on. 

We then adopt a time-dependent functional form for the marginal utility that is flexible enough 
to represent multiple activity types. The form chosen for such marginal utility formulation, which 
is able to represent any activity type bringing positive utility, is taken from the work of Ettema 
and Timmermans (2003): 

𝑢!(𝑡, 𝑡/) =
𝛾!𝛽!(𝑈!.!2)

𝑒𝑥𝑝[𝛽!(𝑡 − (𝛼! + 𝑡/𝜏!))] . (1 + 𝑒𝑥𝑝[−𝛽!(𝑡 − (𝛼! + 𝑡/𝜏!))])3&04
  (2) 

where 𝑈.!2 represents the maximal marginal utility for a certain activity; 𝛼 is a parameter related 
to the location of the saturation point if (γ = 1, 𝜏 = 1) and 𝛽 determines the dispersion around 
the saturation point; γ controls the symmetry of the functional form; τ controls whether the satu-
ration is reached at a fixed time of day or is relative to activity duration. When τ = 0, the utility 
is determined by time of day, regardless of activity start time. This represents activity types such 
as work. τ = 1 describes a duration-based utility function. In this case 𝛼 describes an optimal 
duration instead of a time of the day. Therefore, the 5 parameters allow to have the required 
flexibility in specifying functional forms representing different activity types (work, shopping, 
leisure, etc.). 

We consider marginal utilities to be zone independent, i.e. the same utility can be accumulated 
by performing the same type of activity in different zones. For this reason, the mode and destina-
tion choices are dependent only on the disutility of travelling, in particular on the expected travel 
time when selecting a mode and a zone of destination. 

The joint mode-departure time choice for each pair of zones (y,z) is expressed as a discrete prob-
abilistic choice process using a simple multinomial logit model. The probability of choosing the 
pair of activity starting and ending times (𝑡/, 𝑡$) and mode 𝑚 is computed as follows: 

𝑃!(𝑡/, 𝑡$ , 𝑚|(𝑦, 𝑧)) =
exp	(𝑈(𝑡/, 𝑡$ , 𝑚) + 𝑐'𝑡𝑡!

+,,.)
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with 𝑡#5  and 𝑡$5  being any feasible departure and activity end time. The denominator includes only 
those zones where activity 𝑎 is available (which may include the current zone of departure 𝑦).  

The estimation process used for calibrating the marginal utility function (2) parameters is a Mar-
kov Chain Monte Carlo (MCMC) sampling and an iterative Bayesian updating process. The in-
puts of the MCMC are the generated total demand by time of the day and the total travelled time 
distribution by mode.  For every parameter to be calibrated, a starting value is selected. At each 
iteration, the complete set of parameter values is assessed based on a score, which is composed 
of the likelihood of data generated by the model on one side and on the plausibility of parameter 
values on the other side. A conventional log-likelihood function is used to compare observed and 
estimated data. For a more detailed description one can refer to Scheffer et al (2024).  

3. CASE STUDY AND RESULTS  

To test the methodology, we used individual trips data obtained from a multiday travel survey 
collected in the province of Ghent in 2008, including multiple respondents, days, and tour types. 
A total of 15397 trips from 707 individuals is used in this application, for which we know the 
origin, destination, starting time, ending time, travel time, mode(s) used, activity at origin and 
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activity at destination. The survey includes 12 activity types, regrouped in the following catego-
ries: 1) Home, 2) Work, 3) Shopping & other mandatory activities and 4) Leisure & other sec-
ondary activities. 

 
Figure 2: Travel time frequency (a) and observed arrival and departure times for work trips 
(b) by time of the day (5 minutes interval) 

Only trips to and from work using different modes of transport are considered for this analysis. 
Travel modes are grouped into the following categories: motorized modes, train, urban public 
transport, and soft modes (Figure 2). Figure 2a shows the travel time distribution per mode, 
whereas Figure 2b presents the number of observed trips before and after an activity has been 
performed by mode and by time of the day. Time resolution of 5 mins intervals is used for both 
time-dependent demand and travel times. A full description of the database and analysis of the 
variability of daily activity-travel pattern is available in Raux, et al. (2016). 

 
Figure 3: Estimated vs. observed trips for each time of the day  
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To estimate realistic travel times by mode with respect to the observed traffic, we calculate a 
truncated average of observed travel times using survey answers for each time period. Despite the 
large number of observations, there was not much data for every mode in every time interval. 
Missing data was added via linear interpolation of neighbouring data. 

The estimation procedure ran for 15000 iterations. The resulting final demand profile is rather 
accurate with respect to observed generated demand, with a satisfactory 𝑟7 = 0.82. The main 
result of the estimation is the posterior distribution of estimated parameters. Figure 3 shows the 
final estimation for each time of the day for all trips regardless of the mode of transport. 

 

 
(a) 

 
(b) 

Figure 3: Estimated modal split (a) and mode specific demand profiles (b) 

Including mode specific travel times in the estimation process results in a dynamic modal split 
(Figure 4a), which shows the ability of the model to produce such output even without resorting 
to advanced cost functions but only based on the positive component of the accumulated utility 
and a probability distribution of travelled distances. The estimation was done for a 5-minute in-
terval, but the modal split results are shown for a 20-minute time interval. This avoids skewing 
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the output with missing or outlying data, in terms of modal speed for example. The mode-specific 
departure time profiles (Figure 4b) indicate a good representation of large-scale temporal dynam-
ics. For example, around mid-day, the peak is more visible for soft modes and car users and almost 
no train users appear. The estimated work-related trips can be qualitatively compared Figure 2b 
which represent the real values for all kind of trip purposes. The peak of soft modes around 12AM 
can be explained by shorter trips associated to the secondary (e.g., shopping or eating) activities. 
In general, there is an overrepresentation of modes for which trip duration is typically short, such 
as soft modes.  

4. CONCLUSIONS 

In this work we proposed a novel approach to estimate utility parameters of activity-specific mar-
ginal utilities and mode-specific time-dependent trips. The modelling approach give the possibil-
ity to combine many information sources relating to diverse aspects of travel decisions. In this 
paper we showed how the approach can be used to reproduce the dynamics of mode choices using 
aggregated trips and travel time distributions as input. The application of the proposed methodol-
ogy shows a relatively good estimation, especially given the low input data requirements. 

A better overall estimation is expected to be reached by combining the proposed method with 
speed variations by mode and time of the day and apply more detailed travel cost functions in-
cluding e.g. monetary costs. Moreover, combining the demand model with traffic assignment and 
simulation may allow to include congestion effects, which is an approach that will be developed 
in future research. 
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