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SHORT SUMMARY 

The emergence of Autonomous Mobility on Demand (AMoD) services heralds a transformative 

shift in urban transportation dynamics. With their potential to significantly reduce operational 

costs and eliminate the need for drivers, AMoD services are poised to revolutionize mobility in 

cities like Tel-Aviv, where they are projected to capture a substantial portion of daily trip 

demand. Despite their promise, comprehensive studies evaluating the full functionality of 

AMoD services, especially charging behavior under real-world conditions, remain scarce. 

Following this gap, our study delves into the core tasks of AMoD fleet management: 

dispatching, routing, charging, and rebalancing. Leveraging advanced simulation tools, we 

undertake a rigorous examination of AMoD operations to predict demand, enact daily plans, 

and optimize fleet activities through a sophisticated Markov decision process (MDP) model. 

Our findings reveal that the MDP model facilitates the derivation of optimal actions for 

individual AMoD vehicles, thereby maximizing future profitability while fostering substantial 

energy savings.  

 

Keywords: Automated Mobility on Demand; Urban mobility; Energy constraints; Activity-
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1. INTRODUCTION 

Private cars in metropolitan areas mainly serve short and slow trips within dense urban areas, 

despite their potential for long-distance travel (Beckx et al., 2013). The high demand for 

vehicles for short trips leads urban transportation networks to deal with various problems of 

congestion and pollution (Kenworthy and Laube; 1996) and to offer complementary solutions 

for private vehicles (Ferreira and Liu; 2023; Mavlutova et al., 2023).  Some of the proposed 

complementary solutions combine automation and on-demand services, utilizing automated 

vehicles, to provide convenient and flexible mobility solutions. Automated mobility on-demand 

(AmoD) services have lower operating costs, due to reduced fuel and insurance costs and have 

no driver (Howard and Dai, 2014; Fraedrich and Lenz, 2014), which makes it extremely 

attractive for future development, thus, attracted a lot of attention in the literature. AmoD 

services, like 'Motional' in Las Vegas and 'Waymo' in San Francisco, are already a reality, with 

over 10% of daily expected demand in future cities like Tel-Aviv (Nahmias-Biran et al., 2023). 

Following the expected high demand for these services, a large set of simulation-based studies 

was dedicated to understanding the effects of such services on certain metropolitan areas, while 

others focused on improving the functionality of the service. For example, Bischoff and 

Maciejewski (2016) investigated the potential impacts if all private cars were to be replaced by 

AmoD services in Berlin's metropolitan area. They found that the empty trips made by the 

AmoD fleet would increase the total travel time by 17%. Hörl et al. (2019) employed a discrete 

choice model to estimate dynamic demand for AMoD system in Paris.  They found that in Paris, 

the demand for the service can rise to 1.2 million trips per day, with the optimal fleet size 

identified as 25,000 vehicles. Nahmias-Biran et al. (2022) used activity-based simulation to 

explore the outcomes of replacing all taxis with AMoD services in the Tel-Aviv metropolis. 

They discovered that for the AMoD service to compete effectively with private car usage, its 

prices would need to be 80 percent lower than those of traditional taxis. Additionally, the study 

revealed that this type of service has lower demand among seniors. Zhou et al. (2021) also used 

agent-based simulation to assess accessibility measures to different destinations, such as 

employment, educational, commercial, and healthcare in the case of Singapore. They found 

that while the AmoD service enhances accessibility, it does so only when complementing, not 

replacing, private cars. Lu et al. (2023) used MATSIM model to design AmoD style service 

replacing students' school buses during specific hours of the day, on large rural area in 

Germany. However, in previous papers, electric fleet charging nature was not accounted for, 

given the travel distances that can be covered within a single charge.  

Furthermore, all these studies formulate simulations based on information such as population, 

land uses, and prices, at various detail levels. However, beyond the assignment of vehicles for 

trip requests they do not delve into the intricacies of implementing such services. The 

implementation of AMoD service includes four main tasks: dispatching, routing, ridesharing, 

and rebalancing. Dispatching assigns vehicles to customers based on availability, proximity, 

and battery level. Routing optimizes routes for profitability, while ridesharing serves multiple 

riders with one vehicle, reducing energy use but complicating trip planning with multiple route 

calculations (Zardini et al., 2021). The rebalancing task involves repositioning empty vehicles 

to optimize responsiveness and serve future demand (Dai et al., 2021). It is especially important 

because AMoD systems experience imbalance when some areas have more demand than others 

(Pavone et al., 2012). 

Many studies have tried to develop service frameworks and simulations to study and improve 

these tasks. For example, Tsao et al. (2019) created a system based on a linear programming 

problem that optimizes the price and activity times of the service and was implemented in real-

time while considering predicted demand. Solovey et al. (2019) did rebalancing by using 



 

3 
 

convex optimization (Frank-Wolfe Optimization) that is providing high-quality routing 

solutions for large-scale systems. Lin et al. (2018) relied on reinforcement learning in a multi-

agent simulation platform, where each vehicle is an agent that communicates with the other 

cars; thus, large-scale coordination is created to assign vehicles to different activities. 

Wollenstein-Betech et al. (2021) proposed a quadratic program for socially optimal that 

interacts with exogenous private traffic. Such studies often rely on road networks that 

inadequately represent real cities, lacking details such as land uses, population composition, 

and public transportation. 

Besides fulfilling the four primary tasks, the rebalancing task involves the charging policy and 

energy consumption of the electric fleet. Research is lacking the algorithms performing the 

service's main tasks and determining optimal charging locations within the metropolitan area. 

Advanced studies prioritize charging infrastructure within the electric grid. For example, Chen 

et al. (2016), conducted a preliminary simulation of AMoD wherein they determined the 

requisite number of charging points to meet demand. Their simulation incorporated real-time 

calculations of the vehicle's driving range, with charging times proportionate to this range 

consistently factored in. Bang and Malikopoulos (2022) established a connection between 

electricity consumption and the average speed of a vehicle within a given segment. Their 

definition of a trip necessitating charging was characterized by a battery capacity below 10%. 

Additionally, their model operated under the assumption of consistently available chargers at 

the designated charging stations. Yang et al. (2023) allocated vehicles to charging stations 

based on below 20% battery capacity during simulation. This allocation is designed with the 

consideration of maintaining balanced demand, including charging time and load in the vicinity 

of the station. However, these studies only partially captured urban dynamics, none of them 

explicitly model service demand or the interaction between demand and supply. 

Studies that emphasize the integration of AmoD operation algorithms with electrical features 

for realistic large-scale examination hardly exist. Dean et al. (2022) employed a detailed model 

for each of the AMoD tasks for Austin, Texas. They concluded that a combination of charging 

and rebalancing of the fleet can effectively reduce the flow on main roads while resulting in 

28% more passengers. This combination is especially effective during the PM rush hour. 

However, this analysis is done without predicting the expected demand. Demand forecasting is 

critical in examining network performance and operation of such future service.  

In this research, we aim to bridge this gap by integrating an activity-based demand prediction 

model with an advanced AMoD operator. The operator manages a fleet of vehicles that perform 

the dispatching, routing, and rebalancing tasks, including charging. The simulation is conducted 

using a realistic network of the Tel-Aviv metropolis, incorporating public and private vehicle 

traffic. The platform is based on a Markovian decision prosses combined with an agent base 

SimMobility-Aimsun Ride hybrid framework. 

2. METHODOLOGY 

The objective of this work is to formulate an AmoD operator that advances the prediction of 

demand under energy constantans, while operating in a real and large-scale metropolitan area. 

To achieve this, we first predict the demand for AMoD services in the Tel-Aviv metropolis. 

This involves utilizing an advanced agent and activity-based demand simulator, SimMobility, 

which is integrated with the Aimsun Next simulator. Once demand generation is achieved and 

the trips are dynamically assigned, we analyze both private vehicle routes and demand patterns 

for the new service. From the demand-supply interaction results we develop and solve the 

Markovian decision process which provides the optimization framework for this study. This 
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framework can make optimal adjustments at half-hour intervals and implement them within the 

simulation framework to achieve energy savings and enhance overall fleet performance. 

 

The simulations of the fleet are conducted using the Aimsun Ride platform. Aimsun Ride is an 

API-based system built upon the Aimsun Next traffic simulator. The default operator within 

Aimsun Ride match each request with the nearest available vehicle at the time of the request. 

However, this operator was changed as part of this work to 'Semi-Event' operator that apply the 

optimal action from the Markovian model for optimizing the energy consumption.  

 

Demand and supply prediction 

 

First, we built a representative synthetic population for the study area based on population 

characteristics that were analyzed using a travel habits survey (THS) conducted in 2016-2017 

for the Tel-Aviv metropolitan area. This synthetic population was developed by a growth model 

based on government forecasts to represent the future population for 2040.  In this work 

SimMobility demand simulator is employed to predict the demand for various modes and 

AmoD requests by inputting the land use and population behavior after calibrating it to match 

individual’s behavior in Tel-Aviv metropolis. The demand prediction in this model is linked to 

the Aimsun Next network simulator, which updates the travel time per O-D pair to achieve 

sensitivity of demand to events such as traffic jams. Demand prediction results show that the 

demand for AMoD trips is estimated to be ~10% of the total 10 million trips predicted by the 

simulator for a typical day in 2040. Database of 1.2 million trips  was created for the road 

assignment, including travel times in road segments resolution that can be analyzed to 

understand the dynamics of the road network (Nahmias-Biran et al., 2023; Dadashev et al., 

2023). 

 

Markov decision model design and solution 

  
Markov decision process (MDP) is a mathematical framework taken from the worlds of 

reinforcement learning that enables the modeling of decision-making in situations where 

outcomes are partly random and partly under the control of a decision-maker. In an MDP, the 

decision-maker operates in a set of “states” and can take “actions” that change the current state 

to a new one.  Each action from a specific state has a corresponding reward and result. The 

result represents the next state that the action can stochastically lead us to. By analyzing 1.2 

million trips made by private cars and the requests for the AMOD service in the Tel-Aviv 

metropolis, we gain insights into the dynamics of the real world, specifically in terms of travel 

prices and electricity consumption on different areas at various hours. We also acquire 

knowledge about the probabilities of a vehicle to reach specific area with a particular state of 

charge (SOC) in order to design the transition from state to state as part of MDP framework. 

We created a set of states consisting of the location and SOC of the vehicle and designed actions 

for the four tasks of the AMoD service with an emphasis on rebalancing, charging, and 

passenger pickup as shown in Figure 1. 

 
As shown in Fig.1, Charging is allowed only if the vehicle is in the lowest energy level. This 

action changes the state to the top energy level on a probability of 1 with a cost of 36.75 NIS 

(Figure 1b). The Trip action can take the vehicle to the Pick-Up state or stay put while the 

probability here depends on trip demand in the area and if vehicle’s energy level is enough to 

finish a request (Figure 1c). Finaly, Rebalancing action is allowed travel to other zone but to 

lower energy levels due to energy consumption. SimMobility daily activity schedule outputs 

(Figure 1d). 

 
To solve the MDP, we use dynamic programming, specifically value iterations algorithm. This 

algorithm creates a function between each state and the optimal action it can take to maximize 

its profit in the foreseeable future. 
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Figure 1: Markov decision prosses designed for AmoD main tasks.   

 

Semi-event AmoD operator 
 

To simulate the optimal policy on Tel-Aviv 2040 network, we design an operator that can 

effectively navigate the outcomes of a MDP, taking into consideration the location and energy 

level of the vehicle. To achieve this functionality, it is necessary to redesign the Ride operator 

in order to seamlessly integrate it into the current simulation framework. In this simulation, an 

empty AmoD vehicle “asks” for instructions from the MDP model   to maximize its future 

profit in terms of operation costs. A flow chart of operator’s commands is described in Figure 

2. 
 

According to Figure 2 each vehicle can be in one of 3 statuses: charge, rebalance or trip search. 

If the vehicle is  “idle”  it asks the MDP for recommendation regarding its next action (charge, 

rebalance or search a trip) and follow the recommendation. If the vehicle finished rebalancing 

or charging, it is open to trips requests for a defined time. After this period the vehicle “asks” 

the MDP for optimal action and follow it. The SOC of the vehicle is being updated in each trip 

to identify the correct MDP state and to accept only offers that the vehicle can complete due to 

SOC. 

(a) (b) (c) 

(d) 
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Figure 2: Semi-event AmoD operator flow chart 

3. RESULTS AND DISCUSSION 

The input for the Markovian model is the number of clusters by which the user wants to split 

the AmoD demand using geospatial Hard K-means. The second aspect is the sensitivity of the 

model to SOC changes. The user splits the 58-kWh battery capacity   into equal intervals 

(Energy level), so vehicle state is tuple consists of area clustering, energy level. A large number 

of clustering areas and energy levels make the MDP more detailed, but it comes with the price 

of the runtime of the optimization algorithm. We use three main cases in this simulation 

experiment: (1) the MDP model case with different energy sensitivity (2) demand-oriented 

solution while rebalancing to areas with high demand, and (3) the random action case that 

represents chaos in the system. The results presented here are partial and part of an ongoing 

study demonstrating the potential of such a model. 

 

In our experiment we split the Tel-Aviv metropolis into 5 clusters (the optimal number of 

clustering of Tel-Aviv metropolis following the Elbow method is eleven areas). We defined the 

number of energy levels to 5, 16, and 32, to see the initial sensitivity of the model. In Fig. 3, 

we see the map of Tel-Aviv metropolis after applying the k-mean analysis and the MDP model 

result when each state receives the optimal action. 
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Figure 3: MDP best policy using 5 areas, 4 energy levels model. 

In Fig. 3, we see five clusters – two in the Tel-Aviv center (2,5) and three in the outer ring of 

the metropolis (3,4,1).  The MDP results show that the most profitable areas are five, in the Tel-

Aviv center, and three in the north outer ring. In these areas, the best policy that the AmoD 

vehicle can adopt is to pick up customers, regardless of its battery status. For cars in zone two, 

which are located in the center, it is recommended to go to the nearest zone, zone three, if their 

energy level is very high. If AMoD’s energy level is medium or below, the model suggests 

picking up people inside their area. This is apparently because people in the center of the 

metropolis make shorter trips and pay less for the service. zone four, in the south of the outer 

ring, is the least profitable for picking up passengers, and the model recommends picking 

people up there only when the battery is at its lowest level. Otherwise, it recommends going to 

the northern part of the metropolis, apparently due to the good connectivity of main roads 

connecting the zones, bypassing congestions in the center of the metropolis in zones five and 

two. Zone one, located in the center of the outer ring, is also less profitable. AMoD vehicles 

will perform pick-ups there according to the model only when the battery is relatively weak. 

Otherwise, it is recommended rebalancing to area five when the battery is strong to maximize 

gains. Additionally, when the battery is lower, it is advisable to focus the search for customers 

on the area closest to the center of the metropolis. As the energy level of the model increase, 

the exact battery level at which the policy should shift can be determined. Fig. 4 provides a 

visual representation of the energy consumption based on random selection of 100 vehicles in 

the AmoD Fleet. 

 

 

 

 

 

 

 

 

 

Fig 4: Energy consumption in different scenarios 
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Results show that  in the Random Action case, energy consumption is 1544 kWh, while in the 

Demand-Oriented case, it is 1492 kWh. The MDP model requires 1551 kWh for 4 energy 

levels, 1443.6 kWh for 16 energy levels, and 1411 kWh for 32 energy levels. This data indicates 

a diminishing trend in consumption as more energy levels are added. In Fig .5, the number of 

trips lasting less than 10 minutes and those lasting longer than 10 minutes can be observed. 

 

 

 

 

 

 

 

 

 

 

Figure 5: Travel time in different scenarios 

The increase in number of energy levels leading to heightened sensitivity to battery conditions; 

there is also a noticeable increase in the frequency of short trips, those lasting under 10 minutes, 

as compared to longer trips. With 4 energy levels, there are 319 trips under 10 minutes. When 

sensitivity is increased to 16 energy levels, the number of trips rises to 356, and at 32 energy 

levels, it further increases to 373 trips. This upsurge in short trips is attributed to the model's 

growing emphasis on optimizing battery preservation as energy levels increase, causing the 

vehicle to reroute to areas with a higher occurrence of short trips and reduce costs. In the two 

scenarios, the number of short trips remains similar, with 322 trips in the Random Action case 

and 346 trips in the Demand-Oriented case. 

 

CONCLUSION 

In conclusion, we have designed and demonstrated the operation of an AmoD controller 

framework based on mathematical MDP model. This effort was made to create realistic 

simulation conditions that mimic as much as possible the operation of such fleet in Tel-Aviv’s 

urban environment. On top of this simulation framework, an innovative fleet controller was 

created using Ride tool which can monitor the electric battery status, complete self-charging, 

and initiating empty trips for fleet rebalancing. After accurately representing the current road 

network conditions, we forecast future demand in the large metropolis of Tel-Aviv of 2040. 

Our findings reveal substantial potential for energy savings. Furthermore, our results 

underscore the model's sensitivity to variations in energy parameters, indicating that higher 

numbers of energy levels correspond to greater energy savings and consumption efficiency. 

The insights gleaned from our study carry substantial implications for the advancement of 

sustainable and efficient mobility solutions in metropolitan environments. 
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