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Short summary

The performance of ridesharing systems is intricately entwined with user participation. To charac-
terize such interplay, we adopt a repeated multi-player, non-cooperative game approach to model a
ridesharing platform and its users’ decision-making. Users reveal to the platform their participation
preferences over being only riders, only drivers, flexible users, and opt-out based on the utilities
of each mode. The platform optimally matches users with different itineraries and participation
preferences to maximize social welfare. We analytically establish the existence of equilibria and
design an iterative algorithm for the solution. A case study is conducted with real travel demand
data in Chicago. The results highlight the effect of users’ flexibility regarding mode preferences
on system performance. A sensitivity analysis of the participation level of users underscores the
effect of economies of scale in such systems, emphasizing the pivotal mode of user participation in
system efficiency.
Keywords: Ridesharing, Repeated multi-player non-cooperative game, Linear programming, Ran-
dom utility model, Mode choice

1 Introduction

Despite the profound benefits of ridesharing in terms of pollution and congestion reduction, partic-
ipation in ridesharing systems is often relatively low. Taking Switzerland as an example, a country
where public transport is generally considered among the most efficient (Michael Page, 2023),
statistics of the Federal Statistical Office show that 78% of the households own a car, whereas only
53% own a public transport season ticket. In 2021, the Swiss population traveled around 30 km
per person per day, out of which 69% by car (Swiss Federal Statistical Office, 2021). In 2017, the
Federal Energy Office estimated the average car occupancy during peak hours to be 1.1 (Swissinfo,
2017). In the US, where public transport is typically much less developed, average car occupancy
for commuting trips is 1.2 USDOE (2022). Ridesharing is known to increase vehicle occupancy
and reduce congestion. In addition, ridesharing is expected to reduce car ownership in the long
term. To this end, we analyze users’ participation decisions in a ridesharing system.

User participation is influenced by the cost factors of ridesharing systems. Existing empirical stud-
ies have explored factors affecting user participation in ridesharing (Amirkiaee & Evangelopoulos,
2018). Many studies supported cost factors as critical considerations for participation in ridesharing
Shaheen et al. (2016); Chen et al. (2017); Wang & Noland (2021); Park et al. (2018); Tahmasseby
et al. (2016). Aside from costs, safety concerns, as well as the difficulty of finding rides and so-
cial awareness, are major issues preventing the prevailing of ridesharing (Ciari & Axhausen, 2013;
Nielsen et al., 2015). Julagasigorn et al. (2021) indicate a growing interest in recent studies on
distinct factor analyses for various role preferences, highlighting the necessity to distinguish users
by their participation roles.

Conversely, ridesharing costs depend on user participation. As matching decisions usually bene-
fit from economies of scale, the quality of matches depends on the pool size and composition of
participants. In turn, users decide to participate in ridesharing based on their perceived costs
of ridesharing in comparison to other transportation modes. This highlights the importance of
modeling the interaction of system performance and mode/participation choice. Recent analyt-
ical studies, e.g., Yao & Bekhor (2023), have modeled such interplay resorting to equilibrium
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approaches. The efficiency of matching is often hindered by the imbalance of riders and drivers,
while the participants’ flexibilities can help circumvent this issue (Liu et al., 2020). However, to
our best knowledge, such flexibility in role preferences has not been endogenously modeled in the
literature yet.

This paper describes a game-theoretic approach to the day-to-day model of ridesharing partic-
ipation. A game is envisaged between a platform that determines the matching of riders and
drivers and users who can choose to participate in the system as riders and/or drivers. Particu-
larly, users can choose to be flexible such that they would accept being matched as both drivers
and riders. This is assumed to be a repeated multi-player non-cooperative game. Users estimate
their expected utility of all feasible modes, and their choices among participation modes are cap-
tured by a discrete choice model, in particular, a multinomial logit model. Based on users’ choices,
the platform determines the matching that maximizes the total utility of all participants. We
formulate the decision-making problem of the platform as a Linear Programming (LP) problem. A
diagram describing the interaction of these two layers of decision-making is provided in Figure 1.
We develop an iterative algorithm to evaluate the optimal and equilibrium solutions in a numerical
case study.

Users decide on participation and mode
choice, based on expected utilities

Operator decides on optimal matching
of users as drivers and rider

Mode choices are communicated to the operator

Users update their expected utilities based on
the most recent matching outcomes

Figure 1: Diagram of the decision-making framework

2 Methodology

In this section, we first characterize the decisions of individual ridesharing users. Then, we delineate
the mathematical formulation for modeling the optimal matching decision of the platform. Finally,
we discuss the existence of equilibria and the iterative algorithm used to obtain solutions.

Decisions of ridesharing users

Consider a general road network where heterogeneous users with different itineraries reveal their
travel preferences to be enrolled in the system. In this regard, we consider a set J of classes among
users registered in the ridesharing platform. Users in the same class j ∈ J are homogeneous regard-
ing origin, destination, scheduling preference, and car ownership. Our setting can be generalized
to cases with any other type of heterogeneity by adjusting set J .

Each user chooses a participation mode m from the set M = {opt-out, rider, driver, flexible}. Here,
“flexible” refers to the case where users want to participate in ridesharing but are flexible in their
mode as either riders or drivers. In class j ∈ J , we denote the number of users as nj and the frac-
tions of users who enrolled as opt-out, riders, drivers, and flexible users as popt-out

j , prider
j , pdriver

j ,
and pflexible

j , respectively. Obviously, if users in class j do not own a car, the corresponding propor-
tions pdriver

j and pflexible
j are forced to zero. We consider four types of matches for a combination of

user modes, A = {II,FI, IF,FF}, as follows: 1) an inflexible rider matches to an inflexible driver,
2) a flexible rider matches to an inflexible driver, 3) an inflexible rider matches to a flexible driver,
4) a flexible rider matches to a flexible driver. We use decision variables xa

ij to define the number
of matched riders of class i to drivers of class j that are matched according to type a.
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The matching outcomes depend on the preferred mode choice and might bring different utilities to
users. Opting-out users will never be matched and thus leave the system driving alone or choosing
another transportation mode, such as public transit. We denote the utility of leaving the system
for users from class j ∈ J as uout

j , which is exogenous and independent of the choices of other
users. Then the expected utility of opting out would be

Euopt-out
j = uout

j . (1)

Meanwhile, inflexible riders and drivers have stochastic matching outcomes and utility. The pos-
sible matching outcomes of enrolled riders (m = rider) are further affected by the decisions of
other users and the matching decisions of the platform. Suppose that the platform decides that
the number of riders from class i ∈ J that match drivers from class j ∈ J according to type a ∈ A
is xa

ij . We characterize the probabilities and utilities of different matching outcomes as follows.
(1) Being matched with a driver in class j ∈ J . Assuming that matching outcomes of users from
the same group are independent, the probability P rider

i (ij) of an inflexible rider from class i being
matched with a driver in class j is

P rider
i (ij) =

xII
ij + xIF

ij

prider
i ni

. (2)

The utility of such an outcome is determined by the gained utility from the match and the internal
transfer scheme between drivers and riders. For a match between a rider from i ∈ J and a driver
from j ∈ J , we assume that their joint utility is a constant uij , and if they choose to opt-out, the
individual utilities for them would be uout

i and uout
j , respectively. Then the gained utility gij is

gij = uij − uout
i − uout

j . (3)

Under the internal transfer scheme, the gained utility gij be split across riders and driver as
fractions ϕrider and ϕdriver = 1 − ϕrider. Then the utilities of the rider and the driver, urider

i and
udriver
j , are given by

urider
i = uout

i + ϕridergij , (4)

udriver
j = uout

j + ϕdrivergij . (5)

(2)Being unmatched. The number of unmatched enrolled drivers from class i is prider
i ni−

∑
j∈J(x

1
ij+

x3
ij), such that the probability P rider

i (0) of an enrolled rider not being matched is

P rider
i (0) = 1−

∑
j∈J

xII
ij + xIF

ij

prider
i ni

. (6)

Similar to the outcome of choosing opt-out, unmatched inflexible riders would leave the system.
However, we assume that the utility would be lower than that of choosing opt-out in the beginning
to capture the impact of the risk of being unmatched on users’ willingness to be enrolled as a
rider. In this regard, we incorporate a fixed discomfort penalty δ of being unmatched such that
the utility urider

i of an unmatched inflexible rider is

urider
i = uout

i − δ. (7)

Given the utilities and probabilities of being matched with different drivers and being unmatched,
the expected utility for an inflexible rider from class i is

Eurider
i = uout

i − P rider
i (0)δ +

∑
j∈J

P rider
i (ij)ϕridergij . (8)

Similarly, the expected utility for an inflexible driver from class j is

Eudriver
j = uout

j − P driver
j (0)δ +

∑
i∈J

P driver
j (ij)ϕdrivergij . (9)
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where P driver
j (ij) is the probability of an inflexible driver from class j being matched with a rider

in class i, i.e.,

P driver
j (ij) =

xII
ij + xFI

ij

pdriver
j nj

. (10)

The probabilities P flexible
i (ij) and P flexible

i (ji) of a flexible user from class i being matched with a
driver and a rider in class j are respectively given by

P flexible
i (ij) =

xFI
ij + xFF

ij

pflexible
i ni

. (11)

P flexible
i (ji) =

xIF
ji + xFF

ji

pflexible
i ni

. (12)

The probability of a flexible user from class i not being matched is

P flexible
i (0) = 1−

∑
j∈J

xFI
ij + xFF

ij + xFF
ji + xIF

ji

pflexible
i ni

. (13)

Then, the expected utility of flexible users is given by:

Euflexible
i = uout

i +
∑
j∈J

[
ϕridergijP

flexible
i (ij) + ϕdrivergjiP

flexible
i (ji)

]
− δP flexible

i (0) (14)

Given the expected utilities defined in Equations (1)- (14), the choices among the three modes are
characterized in a multinomial logit manner. The probability of each user from any group j ∈ J
choosing mode m ∈ M is given by

pmj =
e

Eum
j

λ∑
m′∈M e

Eum′
j
λ

,∀j ∈ J, ∀m ∈ M. (15)

where λ is a tuning parameter. We assume that users’ mode preferences are independent of each
other.

Decisions of the Operator

The operator matches potential drivers and riders in order to maximize the total welfare of users.
We macroscopically model the operator’s decisions as an LP. The operator knows a priori the
possible utilities of users before matching. We model the problem using a continuous number of
drivers and riders such that the problem can be modeled as an LP. We formulate the problem as
follows:

max
x

U(x) =
∑
i∈J

∑
j∈J

∑
a∈A

uijx
a
ij +

∑
j∈J

uopt-out
j

(
nj −

∑
i∈J

∑
a∈A

xa
ij −

∑
i∈J

∑
a∈A

xa
ji

)
(16)

s.t.
∑
j∈J

∑
a∈A

xa
ij ≤ (prider

i + pflexible
i )ni,∀i ∈ J (17)

∑
i∈J

∑
a∈A

xa
ij ≤ (pdriver

j + pflexible
j )nj ,∀j ∈ J (18)∑

i∈J

(xIF
ij + xFF

ij + xFF
ji + xFI

ji ) ≤ pflexible
j nj ,∀j ∈ J (19)∑

i∈J

∑
a∈A

(xa
ij + xa

ji) ≤ (prider
j + pdriver

j + pflexible
j )nj ,∀j ∈ J (20)

xa
ij ≥ 0,∀i, j ∈ J, a ∈ A (21)

The objective (16) is the utility of matched and unmatched users. Constraints (17) and (18) ensure
that the number of potential riders and drivers are not exceeded, respectively. Constraints (19)
ensures that every agent is used at most once.
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Here, utilities depend on the travel time, scheduling displacement, and values of time for each
travel mode. Let dist(j) be the distance between the origin and destination of class j. Let
detourinter(i, j) and detourintra(i, j) be the inter-class and intra-class detour (in time), respec-
tively, a driver in class j makes to pick up a rider in class i. The former is the additional time
needed for a driver to reach the pickup and dropoff region of the matched rider. The latter is
the time needed for a driver inside a region to pick up the rider, which depends on the number of
participating drivers and riders from each class and is defined as:

detourintra(i, j) =
Q

(prider
i + pflexible

i )ni(pdriver
j + pflexible

i )nj
(22)

where Q is a case-dependent tuning parameter, αopt-out and αpool are the values of time when trav-
eling alone and sharing rides, s is the subsidy for ridesharing. To allow for scheduling preferences,
t∗j is the desired arrival time of class j. The unit costs of early and late arrival are denoted by β
and γ, respectively, with β < γ. Solo drivers arrive exactly at their desired arrival time. Users
sharing a rider determine the departure time that maximizes their joint utility. By de Palma et
al. (2022), in our setting, two ridesharing users i and j maximize their joint utility if they arrive
at min(t∗i , t

∗
j ). In this case, one user arrives exactly on time while the other arrives early. Then

the utilities are formulated as follows:

uopt-out
j = −αopt-outdist(j) (23)

uij = s− αpooldist(i)− αopt-out(dist(j) + detourinter(i, j)− dist(i)) (24)

− β[max(t∗i , t
∗
j )−min(t∗i , t

∗
j )]− αopt-outdetourintra(i, j) (25)

Equilibrium conditions

Now we define the equilibrium of the interaction between the operator’s decisions and the stochastic
decision-making behavior of users. We define a ridesharing strategy for each class j ∈ J as a
quadruple pj = (pmj )m∈M . The ridesharing strategy pj is determined through the utilities of all
options via the defined multinomial logit model. The matching of drivers and riders is determined
via the defined LP problem. This is a fixed-point problem where the decisions are interrelated.
According to Theorem 1, there always exists a solution to this problem. The proof is omitted here
and relegated to the full version of the paper.

Theorem 1. The multi-player problem defined by the operator and user decisions always admits
a solution.

Iterative algorithm

To evaluate the practical convergence of our methods to an equilibrium, we design an algorithm
that iteratively obtains and updates the decisions of the operator and the individual users. The
general structure of the algorithm is described in Algorithm 1. This iterative process is repeated
until no changes to the optimal matching x and the mode choice quadruple pj are observed.

Algorithm 1: Iterative algorithm
Input: A set of users J , with utility values uopt-out

j and joint utility functions uij
Initialize pj as random variables on [0,1] such that

∑
m∈M pmj = 1 for all j ∈ J .

while Optimal matching or mode choice changes do
Solve (16) - (21)
Update the expected utility vmj for every j ∈ J and m ∈ M
Update every agent’s mode choice decisions pj according to the choice model

end
return Equilibrium matching decisions and mode choices

To foster convergence of the algorithm, we apply a moving average update rule for mode choice
probabilities pj . Let p

(k)
j be the value for pj in iteration k. The moving average is updated as

follows:

p
(k)
j = ρp

(k−1)
j + (1− ρ)pj (26)
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The parameter ρ is tuned based on the specific characteristics of the system.

3 Results

In this section, we evaluate the effect of mode choice, participation, and flexibility on the perfor-
mance of a ridesharing system. We evaluate the convergence of the iterative algorithm, the effect
of geographical properties of users on their mode choice, and the presence of economies of scale.

Case study

We evaluate the results of the developed problem, as well as our iterative algorithm, for a case
study of the city of Chicago, USA. We use data provided by the City of Chicago (2010) to establish
77 nodes based on the communities in the city. We consider a fully connected graph, where the
distances between nodes are obtained as Euclidian distances between the geographical centers of
the communities. The origin-destination data of users is based on the use of ride-hailing vehicles,
provided by City of Chicago (2022). The historical data has been used to construct demand rates
of origin-destination pairs. In turn, this has been used to randomly generate instances of users.
The distributions of origins and destination are displayed in Figure 2.

Figure 2: Distribution of origins and destinations in Chicago (log scale)

We assume car ownership among the users is equal to 75% and users are divided into three groups by
desired arrival time (7:30, 8:00, and 8:30). The value of time for commuting individually (αopt-out)
is set to 6.8 [$/h] and the value of time for ridesharing (αpool) is set to 7.8 [$/h]. Earliness is
penalized by β equal to 3.00 [$/h]. A base subsidy of 1.00$ is used per matched couple. The
gained utility is split evenly across rider and driver, which means that ϕrider = ϕdriver = 0.5. The
default value of λ is set to 0.5, Q is set to 4.0, and ρ is set to 0.5. The iterative algorithm has an
iteration limit of 10.

Convergence of iterative algorithm

We evaluate the convergence of the iterative algorithm considering the following values of λ =
[0.1, 0.55, 1.0] to evaluate the effect of this behavioral parameter on convergence. We compare the
objective value U(x) and the norm of the difference between the p vectors of the current and the
previous iterations. The results are presented in Figure 3.
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Figure 3: Convergence of algorithm

We observe that the algorithm converges to a stationary solution within a couple of iterations. The
algorithm takes more iterations to converge when the value for λ becomes smaller. Smaller values
of λ indicate that users are more sensitive to utility and more likely to choose the option with the
highest utility. This can, therefore, amplify the differences between iterations, making convergence
more difficult. This also implies that for smaller values of λ, larger values of ρ combined with
higher iteration limits can be used to smoothen the progress and improve convergence.

Network analysis

We analyze the influence of geographical features on the mode choice and match of a user by
looking at node-specific results. Figure 4 displays the proportion of drivers and riders for users
with an origin (left) and destination (right) at each node. Figure 5 displays the percentage of users
that are succesfully matched. The results show that users with an origin and/or destination closer
to the city center are more likely to be riders than drivers. Conversely, users with an origin and/or
destination further from the city center are more likely to be drivers than riders. The reason for
this is that in the system, a driver picks up the rider on their way. Therefore, it is usually favorable
for the agent with the longest itinerary to perform the pickup.

Similarly, users with an origin and/or destination closer to the city center are more likely to
be matched, whereas those further from the city center are less likely to be matched. This suggests
that subsidies need to be targeted to those individuals with origins and/or destinations further
away from the city center.
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Figure 4: Proportion of drivers over riders in every region

Figure 5: Proportion of matched users in every region

Effect of participation levels

To study the effect of participation on the observed results, we study various demand levels. We
let d be the fraction of the total number of considered users that are interested in participating
in the ridesharing scheme. The previous sections considered a base level of d = 0.3. We plot the
mode choice probabilities in Figure 6. The corresponding operator-assigned modes are displayed
in Figure 7.

The results indicate that a higher demand level decreases the probability of users opting out
or being flexible participants while it increases their probability of being a driver (especially down-
town → suburb) and a rider (especially downtown → downtown). The number of matches increases
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substantially, especially for users going from downtown to the suburb or from the suburb to down-
town. For the others, the effect is less substantial. In the absence of flexible users (i.e., when
pflexible
j is forced to 0), the number of unmatched users is between 5% and 15% higher than when

users are allowed to be flexible.
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Figure 6: Probabilities of mode choice for different demand values.
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Figure 7: Matches for different demand values.

4 Conclusion

In this paper, we studied the participation of drivers and riders in a ridesharing system with flex-
ible mode choices. We formulated the problem as a repeated multi-player non-cooperative game
where the decisions of the operator were modeled as an LP, and the decisions of the users were
modeled through a random utility model. The central operator decides on the optimal matching
of drivers and riders, and users determine whether to participate in the ridesharing system and in
what mode they wish to participate. To find the equilibrium solution to this multi-player problem,
we developed an iterative approach that updates the expectations and decisions of users based on
previous observations.

Our theoretical results show that an equilibrium solution to this problem exists but is not neces-
sarily unique. Our numerical results are evaluated on a case study of the city of Chicago. Our
iterative algorithm tends to converge to an equilibrium solution within ten iterations. We observe
that users with an origin and destination in the downtown area have a lower probability of being
unmatched and are more likely to be matched as a rider than as a driver. We have also shown that
the considered ridesharing system benefits heavily from economies of scale. As the participation of
users in the system increases, the percentage of matched users increases, and the user equilibrium
solution gets closer to the system-optimal solution. The results also suggest that allowing users to
be flexible in their mode choice improves the performance of the ridesharing system and the utility
of the users.
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The results obtained in this paper can be useful in designing subsidy schemes that improve the
performance of the ridesharing system and can be used to identify a critical mass for participation
in the ridesharing service. These areas are marked as important directions for future research.
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