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Short summary

Multimodal trip planning has attracted attention from scholars because it can make use of the
strengths of multiple transport modes. This study investigates preference-based optimization for
multimodal trip planning with public transport and shared mobility. Both ride-pooling vehicles
and shared micromobility are considered. A mixed integer programming model is developed. Pref-
erences are incorporated into the objective function of the optimization model. The characteristics
of different types of services are considered in constraints. Numerical studies are conducted using
real transport network data in the Rotterdam area. The results show that considering preferences
in multimodal trip planning can improve the service level.
Keywords: Shared Mobility; Public Transport; Preference; Multimodal Trip Planning; Optimiza-
tion.

1 Introduction

While there have been pioneering investigations into the coordinated planning of public transport
and ride-sharing services (Yu et al., 2021; Molenbruch et al., 2021), the integration of micromo-
bility solutions into public transport remains largely unexplored (Stiglic et al., 2018). In recent
years, there has been a notable increase in policy initiatives specifically designed to promote the
widespread adoption of micromobility services as a means of achieving environmentally sustainable
transportation (Abduljabbar et al., 2021). Furthermore, existing research predominantly concen-
trates on optimizing the supply aspect, such as finding the optimal assignment of vehicles (Ma,
2017), or delves into demand analysis, typically employing choice models (Vij et al., 2020; Ho
et al., 2020). There is however a lack of knowledge on unifying both the supply and demand
sides. Consequently, preferences are seldom incorporated into the framework of multimodal trip
planning. Without preferences, trip planning may not prioritize the individual needs of users.
This could result in inconvenient travel experiences, potentially discouraging users from adopt-
ing multimodal transport. The absence of preferences means that services may be designed as
“one-size-fits-all", which can overlook variations in user behavior, potentially leading to reduced
customer satisfaction. Moreover, failing to account for demand can lead to inefficient resource
allocation. For example, vehicles may be dispatched without considering preferences and then be
canceled by passengers, leading to wasted resources, increased operational costs, and underutilized
or overburdened services.
The preference-based multimodal trip planning remains relatively unexplored, primarily due to
its inherent complexities: (a) Modal Integration: It includes the planning of multiple transport
modes, each requiring a distinct planning methodology as each mode has its unique set of variables,
constraints, and optimization criteria. Coordinating these modes seamlessly is a challenging task,
which involves synchronization of schedules and integration of services with specialized planning
approaches. (b) Preference Integration: Integrating the preferences of passengers into the planning
process amplifies the planning complexity. Passengers have diverse and often conflicting prefer-
ences. Some might prioritize speed and direct routes, while others may prefer more economical
or environmentally friendly options. This heterogeneity requires the service provider to consider
a wide range of preferences, making the planning process more intricate. To cater to individual
preferences, the service provider needs to customize services and routes, leading to a multitude of
potential permutations and combinations. This customization can result in a vast number of possi-
bilities that must be evaluated, making the planning process computationally intensive. To handle
these complexities, the service provider may need to develop sophisticated routing and scheduling
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algorithms that can efficiently match passengers with their preferred services. This often involves
solving complex optimization problems, which can be computationally demanding.
To bridge the existing gaps in the literature, we present optimization approaches for tailoring
multimodal trip planning. Our focus extends to encompass public transport modes, such as the
metro and train, alongside Shared Mobility (SM) options such as ridesharing and micro-mobility
services. Our contributions include: (a) introducing a novel multimodal optimization approach,
which seamlessly integrates public transport and SM services. (b) investigating different exogenous
demand scenarios for different customer segments, including passengers with different genders,
ages, incomes, education levels, etc., taking into account both homogeneous and heterogeneous
preferences. (c) providing valuable managerial insights through extensive numerical experiments
conducted on a real-world transport network and demand data set. These experiments compare
scenarios with and without consideration of homogeneous or heterogeneous preferences, offering a
comprehensive understanding of the model’s performance.

Table 1: Notation.

Sets:
W Set of modes indexed by w.
R Set of requests indexed by r. Rt ⊆ R denotes the set of active requests at time

t, which includes those that have not yet been scheduled or have not yet reached
their intended destinations. Rfinish ⊆ R represents requests that already reached
their destinations.

N Set of locations indexed by i and j. O ⊆ N , set of depots. P/D ⊆ N , set of
pickup/delivery locations. Ct ⊆ N , set of current locations of vehicles at time
step t. Nw ⊆ N represents the set of locations for mode w.

K Set of vehicles indexed by k. KPT ⊆ K, Kride ⊆ K, and Kmicro ⊆ K represent
sets of PT services, ride sharing vehicles, and micromobility vehicles, respectively.
Kprivate and Kr

private are sets of private vehicles and private vehicles owned by
passenger r, respectively.

A Set of arcs. For i, j ∈ N , the arc from i to j is denoted by (i, j) ∈ A. Ap/Ad ⊆ A
represents the set of pickup/delivery arcs. For (i, j) ∈ Ap, i ∈ P . For (i, j) ∈ Ad,
j ∈ D. Aw ⊆ A represents the set of arcs for mode w.

H Set of schedules of finished requests Rfinish.
Parameters:
uk Capacity of vehicle k.
qr Number of passengers associated with request r.
τkij Travel time [minute] on the shortest path between locations i and j for vehicle k.
[apr

, bdr
] Earliest pickup time and latest delivery time for request r.

vk Speed [km/h] of vehicle k.
vr Walking speed [km/h] of request r.
dkij Distance [km] between locations i and j for vehicle k.
cnk c1k/c

1′

k are transport cost [euro] per min/km using vehicle k ∈ K. c2k is the cost
per hour of waiting time.

M A large enough positive number.
ASCw Alternative specific constant of using transport mode(s) m.
β Parameters in travellers’ utility functions.
searching Time for searching parking space.
parking Parking cost.
Variables:
xk
ij Binary variable; 1 if vehicle k uses the arc (i, j), 0 otherwise.

ykrij Binary variable; 1 if request r transported by vehicle k uses arc (i, j), 0 otherwise.
sklir Binary variable; 1 if request r is transferred from vehicle k to vehicle l ̸= k at

location i, 0 otherwise.
tsr Binary variable; 1 if request r is transferred during transportation, 0 otherwise.
tkri /t′

kr
i /t

kr
i The arrival time/service start time/service finish time of request r served by

vehicle k at location i.
tki /t

′k
i /t

k
i Arrival time/service start time/departure time of vehicle k at location i.

twait
ki Waiting time of vehicle k at location i.
tk Micromobility vehicle k’s last operation time.
lk Micromobility vehicle k’s last location.
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Ur Utility value of request r.
U Utility value of requests that have transfer operations during transportation.
U ′ Utility value of requests that do not have transfer operations during transporta-

tion.
vtw In vehicle time of using transport mode(s) w.
costw Cost of using transport mode(s) w.
walkw Walking time using transport mode w.
wtw Waiting time using transport mode w.

2 Methodology

The notations used in this paper are shown in Table 1. In the following, we envisaged a preference-
based multimodal transport journey planner, which is designed to seamlessly provide PT and SM
services to passengers. Walking to/from PT stations and SM vehicles is also considered. The
objective of the service provider is to maximize the social welfare, which is the logsum function of
utilities of all passengers who have not arrived their destinations (Objective Function 1). The cost
function includes the fixed cost (costkfixed), cost for travel time (τkij ∗ costktime), and cost for travel
distance (dkij ∗ costkdistance).

(1)maxF = log
∑
r∈R

exp(tsrU + (1− tsr)U
′)

(2)

U =
∑
k∈K

ASCkx
′k
r +

∑
(i,j)∈A

(
∑

k∈Kpublic

(βPTwaitt
wait
ki + βmainTimeτ

k
ij + ykrij βmainCostcost

k
ij)

+
∑

k∈K\Kpublic

(βsubTime(t
wait
ki + τkij) + ykrij βsubCostcost

k
ij)) + ϵ

(3)U ′ =
∑
k∈K

ASCkx
′k
r +

∑
(i,j)∈A

(
∑

k∈Kwalk

βwalkτ
k
ij+

∑
k∈K\Kwalk

(βmainTimeτ
k
ij+ykrij βmainCostcost

k
ij))+ϵ

(4)costkij = costkfixed + τkij ∗ costktime + dkij ∗ costkdistance

The utility functions outlined in Montes et al. (2023) are used in this study. Montes et al. (2023)
study the multimodal transportation in Rotterdam, focusing on the preferences and choices associ-
ated with both metro usage and the subsequent egress modes, which encompass bus/tram, shared
bicycles, shared e-mopeds, and walking. Montes et al. (2023) do not consider ride pooling and
ingress trip and we extend the applicability of the parameters initially established for private cars
and egress trips to encompass ride pooling and ingress trips. These utility functions are listed in
Equations 5 to 11.

UPT&sb =ASCPT + ASCsb + βPTwait ∗ wtPT + βmainTime ∗ vtPT+

βmainCost ∗ costPT + βsubTime ∗ vtsb + βsubCost ∗ costsb + ϵ
(5)

Upublic&sm =ASCPT + ASCsmE + βPTwait ∗ wtPT + βmainTime ∗ vtPT+

βmainCost ∗ costPT + βsubTime ∗ vtsm + βsubCost ∗ costsm + ϵ
(6)

Upublic&ride =ASCPT + ASCrideE + βPTwait ∗ wtPT + βmainTime ∗ vtPT+

βmainCost ∗ costPT + βsubTime ∗ (vtride + wtride) + βsubCost ∗ costrideE + ϵ
(7)

UPT =ASCPT + βPTwait ∗ wtPT + βmainTime ∗ vtPT+

βmainCost ∗ costPT + βwalk ∗ walkPT + ϵ
(8)

Usm =ASCsm + βwalk ∗ walksm + βmainTime ∗ vtsm + βmainCost ∗ costsm + ϵ (9)
Ucar =ASCcar + βmainTime ∗ (vtcar + searching) + βmainCost ∗ (costcar + parking) + ϵ

(10)

Ubike =ASCbike + βmainTime ∗ vtbike + ϵ (11)

Constraints (12) to (35) are constraints for all transport modes.
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Constraints (12) and (13) ensure that passengers for each request starts and ends at its origination
and destination, respectively.∑

k∈K

∑
j∈N

ykrprj ⩽ 1 ∀r ∈ R (12)

∑
k∈K

∑
j∈N

ykrjdr
⩽ 1 ∀r ∈ R (13)

Constraints (14) enforce that each vehicle may initiate at most one route from its initial location;
Constraints (15) ensure that if a vehicle is used, it ends the route at its ending location, except for
micromobility and walking. Constraints (16) represent vehicle flow conservation. Constraints (17)
link ykrij and xk

ij variables in order to guarantee that for a request to be transported by a vehicle,
that vehicle needs to traverse the associated arc.∑

j∈N

xk
o(k)j ⩽ 1 ∀k ∈ K \Kwalk (14)

∑
j∈N

xk
o(k)j =

∑
j∈N

xk
jo′(k) ∀k ∈ K \Kwalk&micro (15)

∑
j∈N

xk
ij −

∑
j∈N

xk
ji = 0 ∀k ∈ K \Kwalk, ∀i ∈ N \ o(k), o′(k) (16)

ykrij ⩽ xk
ij ∀(i, j) ∈ A, ∀k ∈ K, ∀r ∈ R (17)

Constraints (18) ensure that there is only one transfer for one request at a transfer location.
Constraints (19), Constraints (20), and Constraints (21) forbid transfers without PT services and
walking, transfers between micromobility vehicles, and transfers between the same vehicle k, re-
spectively. ∑

j∈N

ykrji +
∑
j∈N

ylrij ⩽ sklir + 1 ∀r ∈ R, ∀i ∈ T, ∀k, l ∈ K (18)

sklir = 0 ∀r ∈ R, ∀i ∈ T, ∀k, l ∈ K \Kpublic&walk (19)

sklir = 0 ∀r ∈ R, ∀i ∈ T, ∀k ∈ Kmicro, ∀l ∈ Kmicro (20)

skkir = 0 ∀r ∈ R, ∀i ∈ T, ∀k ∈ K (21)

Constraints (22) are the capacity constraints.∑
r∈R

qry
kr
ij ⩽ ukx

k
ij ∀(i, j) ∈ A, ∀k ∈ K (22)

Constraints (23) ensure the transfer occurs in the PT stations that have the available facilities for
transfers, such as SM hubs.

sklir = 0 ∀k ∈ Kw1 , ∀l ∈ Kw2 , ∀i ∈ T \ Tw2
w1

, ∀r ∈ R, ∀w1, w2 ∈ W (23)

Constraints (24) guarantee that service start time is later than the arrival time of passengers.
Constraints (25) ensure that the service finishing time equals service starting time plus time t′′

kr
i .

The time t′′
kr
i varies according to the specific transport mode. In the context of public transport, it

means dwelling time, whereas in the case of micromobility, it means the time required for unlocking
and locking the vehicle. Constraints (26) ensure that departures occur only after all passengers
have boarded or disembarked from the vehicle. Constraints (27) ensure that the request’s arrival
time is the same as the vehicle’s arrival time. Constraints (28) define the vehicle’s service starting
time.

tkri ⩽ t′
kr
i ∀i ∈ N, ∀k ∈ K, ∀r ∈ R (24)

t′
kr
i + t′′

kr
i

∑
j∈N

ykrij ⩽ t
kr
i ∀i ∈ N, ∀k ∈ K, ∀r ∈ R (25)

t
k
i ⩾ t

kr
i ∀i ∈ N, ∀k ∈ K, ∀r ∈ R (26)

tki ⩽ tkri ∀i ∈ N, ∀k ∈ K, ∀r ∈ R (27)

t′
k
i ⩾ t′

kr
i ∀i ∈ N, ∀k ∈ K, ∀r ∈ R (28)
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Constraints (29) and (30) ensure that the time on route is consistent with the distance travelled
and speed. Various modes of transportation have distinct speeds (Medical News Today, 2023;
VerkeersNet, 2023; Pulse, 2023). Constraints (31) take care of the time window for origination and
destination.

t
k
i + τkij − tkj ⩽ M(1− xk

ij) ∀(i, j) ∈ A, ∀k ∈ K \Kfix (29)

t
k
i + τkij − tkj ⩾ −M(1− xk

ij) ∀(i, j) ∈ A, ∀k ∈ K \Kfix (30)

t′
kr
pr

⩾ apr
ykrij , t

kr
dr

⩽ bdr
) ∀(i, j) ∈ A,∀r ∈ R, ∀k ∈ K (31)

Constraints (32) are time constraints for transfers. If there is a transfer from vehicle k to vehicle
l at transfer location i, the boarding time t′

lr
i for vehicle l must occur after the alighting time t

kr
i

from vehicle k. Constraints (33) calculate waiting time.

t
kr
i − t′

lr
i ⩽ M(1− sklir) ∀r ∈ R, ∀i ∈ T, ∀k, l ∈ K, k ̸= l (32)

twait
ki ⩾ t′

k
i − tki ∀i ∈ N, ∀k ∈ K (33)

Constraints (34) and (35) set variables x and y as binary variables.

xk
ij ∈ {0, 1} ∀(i, j) ∈ A, ∀k ∈ K (34)

ykrij ∈ {0, 1} ∀(i, j) ∈ A, ∀k ∈ K, ∀r ∈ R (35)

The constraints represented by (36) guarantee the continuous operation of public transportation
(PT) vehicles, even in the absence of passengers.

xk
ij = 1 ∀(i, j, k) ∈ PT (36)

Constraints (37)-(40) are for PT and ride pooling. Constraints (37)-(40) represent request flow
conservation. Constraints (37) and (38) are for regular and transfer locations, respectively. If
request r is not transferred at location i ∈ T but vehicle k passes location i for other requests,
Constraints (37) do not work on request r. Therefore, additional flow conservation of requests
(Constraints (39) and (40)) are added.

∑
j∈Nride&public

ykrij −
∑

j∈Nride&public

ykrji = 0 ∀k ∈ Kride&public, ∀r ∈ R, ∀i ∈ Nride&public \ T, pr, dr

(37)∑
k∈Kride&public

∑
j∈Nride&public

ykrij −
∑

k∈Kride&public

∑
j∈Nride&public

ykrji = 0 ∀k ∈ Kride&public, ∀r ∈ R, ∀i ∈ T \ pr, dr

(38)∑
j∈Nride&public

ykrij −
∑

j∈Nride&public

ykrji ⩽
∑

l∈Kride&public

slkir ∀k, l ∈ Kride&public, ∀r ∈ R, ∀i ∈ T \ pr, dr

(39)∑
j∈Nride&public

ykrji −
∑

j∈Nride&public

ykrij ⩽
∑

l∈Kride&public

sklir ∀k, l ∈ Kride&public, ∀r ∈ R, ∀i ∈ T \ pr, dr

(40)

Constraints (41) ensure vehicles running on predefined routes. Routes of PT are predefined, and
ride-pooling vehicles may also operate along predetermined routes. Dock-based micromobility
vehicles can only be parked in predefined locations, therefore Constraints (41) also apply to these
vehicles. Constraints (42) take care of the time windows for predefined stations, and they are not
applied to micromobility vehicles.

xk
ij = 0 ∀k ∈ Kfix, ∀(i, j) ∈ A \Ak

fix (41)

tkri ⩾ aki y
kr
ij , t

kr
i ⩽ bki +M(1− ykrij ) ∀(i, j) ∈ A, ∀r ∈ R, ∀k ∈ Kfix \Kmicro (42)

Constraints (43) ensure that a micromobility vehicle is incapable of independent movement, as it
is only allowed to be relocated by a passenger.

xk
ij ⩽ ykrij ∀(i, j) ∈ Amicro, ∀k ∈ Kmicro, ∀r ∈ R (43)
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Constraints (44) are designed to preserve the records of completed requests, ensuring that their
schedules are maintained.

ykrij = 1 ∀(i, j, k, r) ∈ H (44)

Since a passenger can be transferred more than once, Constraints (45) and (46) set a new variable
tsr, which determines whether request r is transferred or not.

tsr ⩽ sklir ∀k, l ∈ K \Kwalk, ∀r ∈ R, ∀i ∈ T (45)

tsrM ⩾ sklir ∀k, l ∈ K \Kwalk, ∀r ∈ R, ∀i ∈ T (46)

x′k
r ⩾ xk

ij ∀k ∈ K, ∀r ∈ R, ∀(i, j) ∈ A (47)

3 Results and discussion

The distances between locations are obtained from OpenStreetMap (OpenStreetMap, 2023). PT
service schedules are obtained from GTFS data (MobilityData, 2023). The capacity of PT is as-
sumed to be unlimited. According to a commonly used Hexagonal Hierarchical Geospatial Indexing
System (H3, 2023), the studied area is divided into hexagonal grid cells. The requests are generated
based on these grid cells. First, an origin-destination grid cell pair is selected, and the locations of
the origin and destination are randomly generated within each cell. The start and latest ending
times are also generated with random durations. Requests can be generated according to specific
distributions. When designing instances, the time of passengers follows a Poisson distribution that
considers peak hours in a day. The origination and destination follow a uniform distribution. At
each time step, the solutions considering all passengers are generated and recorded. The best
solution will be considered as the initial state in next time step. The specific solution for each
individual passenger is also recorded, which includes travel cost, time, utility, transport mode,
route, and schedule. The profiles and heterogeneous preferences of passengers are considered using
parameters in Montes Rojas (2021). We conduct a case study in the Maassluis city, which is a
suburban area in The Netherlands. Figure 1 shows the Maassluis area with grid cells.

Figure 1: Grid cells in Maassluis area.

Figures 2-5 show the OD pairs of passengers, depots of ride-pooling vehicles, depots of sharing
scooters, and hubs of sharing bikes, respectively. The origins of passengers are randomly generated,
and the destinations of passengers are generated based on Gamma distributions, as outlined in the
illustrations referenced in Soza-Parra et al. (2022). The centers of destinations are two metro
stations and one church. The stations of dock-based vehicles are fixed in these three centers.
The departure and latest arrival times are generated using Poisson distributions, considering peak
hours.

6



Figure 2: Originations (green color) and destinations (red color) of passengers in Maassluis
area.

Figure 3: Depots of ride-pooling vehicles in Maassluis area.

Figure 4: Beginning depot (green color) and ending depot (red color) of scooters in Maass-
luis area.
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Figure 5: Hubs of bikes in Maassluis area.

Compared to general passengers, female passengers prefer bikes and private vehicles over the com-
bination of PT and bike/ride-pooling vehicles when scooters are not available, as shown in Figure
6. When scooters are available, the results for female and general passengers are the same.

Figure 6: Modal share changes of female passengers compared to general passengers

We also check that the modal share changes when the price of scooters changes, as shown in Figure
7. The results are unaffected by the number of shared bikes, as the modal share changes for 0,
5, and 10 shared bikes are identical. The results show that when the price of scooters is reduced
from 4 euros to 1 euro, the modal share of scooters is decreased, while the modal share of using
a combination of public transport and scooters is increased. As the price of scooters decreases,
the overall cost of using multimodal transport becomes more appealing. The multimodal service
provides faster transport compared to using only scooters. Therefore, when the price of scooters
decreases, multimodal transport services instead of standalone scooter services are chosen.
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Figure 7: Modal share changes when scooter price is reduced from 4 euros to 1 euro

4 Conclusions

This study has delved into preference-based optimization for multimodal trip planning, encompass-
ing public transport and shared mobility. By integrating preferences into the objective function of
the optimization model, our research contributes to improving the efficiency of multimodal trans-
portation solutions. The results under different groups of passengers and prices of vehicles are also
analyzed. Our findings indicate that the demand side is influenced by factors such as the number of
vehicles and service prices on the supply side, which should be taken into account when delivering
multimodal trip services. The proposed approach can be used by the multimodal trip planner or
incorporated into a Mobility as a Service (MaaS) platform.
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