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Short summary

This research examines the competition between High-Speed Rail and air travel in the London-
Amsterdam bimodal corridor. Using Discrete Choice Models, we revealed endogeneity in the fare.
To address this issue, we employed the Control Function approach, which allowed us to identify and
rectify inaccuracies in fare estimates. Our findings indicate that the corrected model significantly
outperforms the original endogenous model in terms of accuracy and reliability, underscoring the
critical importance of addressing these methodological challenges.
Keywords: Endogeneity; Discrete Choice Model; Control function; High-Speed Rail; Air trans-
port.

1 Introduction

High-Speed Rail (HSR) has become an affordable and sustainable alternative to air travel for
domestic and cross-border trips worldwide (see, e.g., Zhang et al., 2019). Following this trend,
researchers are increasingly investigating drivers underpinning transport demand in markets where
HSR competes with air carriers. The standard approach to perform these analyzes is the use of
linear econometric models or adopt gravity formulation approaches where the dependent variable
is the aggregated demand or the market share of the single alternative (see, e.g., Avogadro et
al., 2023). However, at an individual level, transport demand is not continuous, but discrete,
as single passengers choose the best alternative to make their trip. Thus, empirical studies that
use individual data extensively rely on Discrete Choice Models (DCM) to investigate passenger
preferences.
Most studies investigating HSR and air transport demand using passenger choices leveraged Stated
Preferences (SP) surveys alone or combined with Revealed Preferences (RP) data (see, e.g., Hong
& Najmi, 2022; Bergantino & Madio, 2020). Not surprisingly, from a methodological perspective,
the majority of previous works estimate Multinomial (MNL) or Nested Logit (NL) models, which
are the most common DCM applied in the transport literature since they have closed-form expres-
sions for the choice probability, making them computationally easy to estimate. Regarding modal
attributes, fare, frequency, and travel time are among the most investigated explanatory variables.
However, other variables such as the access and egress time as well as comfort and reliability also
demonstrated to affect passenger choices.
Notably, all previous studies leveraging DCM systematically disregard possible correlations between
the error term and the explanatory variables, which may lead to biased and inconsistent estimates
of the model parameters (C. A. Guevara & Ben-Akiva, 2012). This so-called endogeneity problem
has been extensively investigated in the case of linear models. For example, it is well-known that the
fare may be endogenous because higher consumption allows transport providers with market power
to charge higher prices (Birolini et al., 2020). Moreover, demand may also affect the frequency,
so even this variable could introduce endogeneity problems (Birolini et al., 2020). Another source
of endogeneity is the correlation of ticket price with unobservable quality characteristics that can
affect demand, an effect known as omitted variable bias (Li et al., 2020).
Based on this gap, the contribution of the current paper is twofold: (i) evaluate potential sources
of endogeneity in DCM analyzing a multimodal corridor featuring the competition between HSR
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and air transport; (ii) apply the Control Function (CF) approach to rectify endogeneity issues
proposing the fare observed in similar markets and the price of the single alternative’s fuel (i.e. oil
or electricity) as instruments.

2 Modeling framework

Let us assume a DCM with endogeneity due to omitting a certain variable, q, correlated with
an observable variable X. Let Vin denote the utility obtained by individual n when choosing
alternative i:

Vin = ASCi + βyYin + βxXin + βqqin + ein︸ ︷︷ ︸
εin

, (1)

where ASCi is an Alternative Specific Constant, Yin is a set of known (measurable) and exogenous
attributes, Xin is the possible endogenous variable, βy, βx and βq are parameters to be estimated,
and ein is an exogenous error term. Then, assuming that qin is an unobservable variable, the
specification proposed by the modeler is:

Vin = ASCi + βyYin + βxXin + εin, (2)

where the new error term, εin, contains both ein and qin. The variable Xin is endogenous because
it is correlated with εin through qin in Eq. (2). The correlation arises because in Eq. (3), the
variable Xin depends on qin as follows:

Xin = γ0 + γz1z1,in + γz2z2,in + γyYin + γqqin + ϕin︸ ︷︷ ︸
δin

, (3)

where z1,in and z2,in are the so-called Instrumental Variables (IVs or instruments), and ϕin is an
exogenous error term. For illustration, we assume that the endogenous variable Xin is correlated
with the exogenous variables Yin, and the error term δin contains both ϕin and qin. Then, it can be
shown that the DCM corrected by endogeneity has the following functional form (C. A. Guevara
& Ben-Akiva, 2012):

Vin = ÃSCi + β̃yYin + β̃xXin + βδ δ̃in + ẽin (4)

where δ̃in is a proper estimator of δin. The intuition is that δ̃in captures the part of the endogenous
variable Xin correlated with the error term εin. Therefore, if the instruments z1,in and z2,in are
truly exogenous and correlated with the endogenous variable, δ̃in should be added to the utility
Vin to control the endogeneity problem. The practical implementation of the CF approach follows
two main stages. First, find an estimator for δin, which can be computed as the residual of the
Ordinary Least Squares (OLS) regression of Xin on the instruments (z1,in, z2,in) and the exogenous
variables (Yin). Second, estimate the DCM considering δ̃in, Xin and Yin as explanatory variables
to obtain consistent estimators β̃x for the parameter βx (C. A. Guevara & Ben-Akiva, 2012).
We apply this method to analyze one of the latest additions to the European HSR network: the
Eurostar connection between Amsterdam and London. The HSR alternative entered this highly
dense route in 2018, gaining a market share of about 10% against a broad set of air alternatives,
including traditional and low-cost carriers, connecting Amsterdam with various airports within
the London airport system. To analyze passenger preferences in this market, we leveraged a set
of revealed preferences data from the International Passenger Survey (IPS), conducted by the UK
Office for National Statistics (ONS), interviewing passengers traveling to and from the UK by air
or the channel tunnel.

3 Results

Firstly, while the possibility of endogeneity in frequency is somewhat argued in transportation
literature, for the London-Amsterdam market we did not find any proof of endogeneity concerning
this variable. This is likely due to the peculiarities of the specific market. Contrariwise, we
proved endogeneity in the fare when estimating the MNL. To correct this issue, we propose two
instruments: (i) the average fares observed for trips that occurred during the same month and year
but on a similar market (i.e., London-Paris) by mode (zfare), and (ii) the average price of each
alternative’s power source (i.e. oil or electricity) for the month and year when the trip occurred
(zpower).
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The two IVs we propose are correlated with the endogenous variable fare and do not confound
with market share. In other words, they can affect the endogenous variable through aggregate
travel demand, but not the individual passenger’s travel utility and associated unobservable service
attributes. Fuel cost has been considered a valid instrument as it is correlated with ticket price
and not confounded with market share (Birolini et al., 2020). Similarly, Lurkin et al. (2017) use
average prices for other markets as an effective instrument to control for the effects of endogeneity
in modeling airline price-demand elasticity.
Table 1 reports the endogenous and corrected DCM estimates. In addition to relevant supply
attributes that affects passenger choices, both models were estimated including Alternative Specific
Constants (ASCs), where each alternative is a single travel option. The left-hand side model on
Table 1 considers on-board travel time, access/egress time, the logarithm of the weekly frequency,
the expected delay, and the fare, which are the variables that usually contribute to the choice of
consumers in this context. Frequency is included in logarithmic form for two reasons. First, to
account for the expected decreasing marginal utility of frequency. Second, since a route alternative
is considered as an aggregation of individual flights/trains, the logarithmic form is the most suitable
for a characteristic that captures the size of an aggregated alternative. Except for the one related
to the fare, the endogenous model parameters show correct signs and are statistically significant at
99%. However, the positive sign of the fare parameter is clear evidence of the endogeneity effects of
this model, because it is not in line with the basic economic theory and typical passenger behavior.

Table 1: Endogenous and corrected DCM for the multimodal London-Amsterdam market.

Variable Alternative Endogenous model Corrected model
Coefficient∗ Std. Error∗∗ Coefficient∗ Std. Error∗∗

Alternative Specific Constant (ASC) AIR 1 -11.230 0.8463 -8.2560 0.8675
AIR 2 -10.960 0.8202 -8.0765 0.8396
AIR 3 -8.8570 0.7765 -6.3023 0.7930
AIR 4 -8.1550 0.7815 -5.6479 0.7986
AIR 5 -9.2730 0.7876 -6.3260 0.8118
AIR 6 -9.1810 0.7974 -6.1407 0.8228
AIR 7 -8.6980 0.8252 -6.2176 0.8399
AIR 8 -9.1370 0.7994 -6.6753 0.8135
AIR 9 -9.3210 0.8356 -6.5675 0.8528
HSR (base) - (base) -

On-board travel time All -0.0638 0.0053 -0.0457 0.0054
Access/egress time All -0.0529 0.0006 -0.0532 0.0007
Log (weakly frequency) All 0.6787 0.0562 0.6541 0.0591
Expected delay All -0.0140 0.0033 -0.0114 0.0033
Fare All 0.0026 0.0003 -0.0101 0.0010
Fare’s residual All - - 0.0147 0.0010
Sample size 5199 5199
Log-likelihood -8921.164 -8892.846

∗All parameters are significant at the 99% level.
∗∗Standard errors determined using Bootstrap.

The right-hand side of Table 1 reports the model corrected for endogeneity using the CF approach.
Since the model is estimated in two stages, the standard errors cannot be directly inferred from the
Fisher-information matrix. Therefore, the variance-covariance matrix must be determined using a
non-parametric method, in this case, we use bootstrapping (Petrin & Train, 2003). The corrected
model provides one additional estimate compared to the endogenous model: the one corresponding
to the fare residuals derived from the first stage of the CF method.
Before discussing the estimated parameters, let us verify the hypothesis of fare endogeneity in the
uncorrected model and the compliance of the proposed IVs to exogeneity and relevance require-
ments. Considering the former, the endogeneity of the fare can be proved following the Rivers &
Vuong (1988) method by evaluating the significance of the residuals of the endogenous variables in
the second stage of the CF approach. In our case, the fare’s residuals are significant in the second
stage of the CF approach, thus there is evidence that the model exhibits endogeneity due to the
fare variable. Concerning the relevance condition, we consider the recommendation of C. Guevara
& Navarro (2015) to check that the F test is greater than 10 for the first stage regression in the
CF method. On the other hand, the instruments’ exogeneity condition for DCM was confirmed
through SmREF test, which is the most recommended due to its larger power, smaller size dis-
tortion, and more robustness compared to others analyzed by C. A. Guevara (2018). Finally, to
evaluate the goodness of the two models (endogenous and corrected), we used the likelihood ratio
(LR) test. Since the LR value exceeds the critical value, we conclude that the corrected model
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outperforms the restricted one. Compliance with the relevance and exogeneity conditions, as well
as the results of the goodness of fit test, are summarized in Table 2.

Table 2: Relevance, exogeneity, and goodness tests for the Instrumental Variables
Property Test Value Threshold
Relevance F-test (fare) 11.85 > 10 ✓
Exogeneity SmREF 0.204 < 3.84 ✓
Goodness LR 56.64 > 3.84 ✓

Considering the coefficients of the corrected model, we observe that the CF method changes the
sign of the fare coefficient, which confirms the bias in the model where endogeneity is overlooked.
Overall, the model confirms the sensitivities toward the different travel characteristics reported in
previous transport mode choice studies. Namely, increases in travel time, access time, expected
delay, and fare negatively influence passenger utility. Concurrently, higher frequency increases
passenger attitudes toward the single travel alternative.

4 Conclusions

We researched sources of endogeneity in the multimodal corridor between Amsterdam and London.
It is shown that the frequency is not endogenous, because of certain market features, confirming
that numerous particular market configurations may limit the occurrence of this problem, adds to
the literature on frequency. Our correction of the endogeneity of prices was completed successfully
with two IVs. Where it concerns values and awareness of bias stemming from these endogenous
specifications.
Dealing with endogeneity adds a layer of complexity to our efforts in modeling the London-
Amsterdam multimodal (HSR and air transportation) market. We identified the fare variable
as a potential troublemaker due to the simultaneous estimation and the omission of specific factors
that usually affect this variable. The results from correction using the CF approach highlight that
the corrected model performs better than the original model (endogenous). This finding was tested
according to LR tests.
Endogeneity concerns for the case study on the London-Amsterdam route, where two modes com-
pete, were adequately addressed using the CF framework. The CF method proves to be a well-
suited methodology for this application. During the research, an important challenge was to find
a candidate set of instruments that show relevance and exogeneity, supporting their use in cor-
recting endogeneity in the endogenous variable (fare). The selected instrumental variables were:
(i) the average fares observed for trips that occurred during the same month and year but on a
similar market (i.e., London-Paris) by mode, and (ii) the average price of each alternative’s power
source (i.e., oil or electricity) for the month and year when the trip occurred. The identification
of these variables represents a significant contribution, affirming their validity. Future researchers
are encouraged to adopt the CF approach and highlight instrumental variables as a reliable guide
for addressing potential endogeneity issues in mode choice models.
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