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Short summary

This study investigates the potential of link- and path-based incentives to mitigate congestion
and reduce emissions in urban transportation networks. Both incentive schemes are formulated as
non-linear optimisation problems with complementarity constraints. Mathematically, it is demon-
strated that the feasible region of the link-based model is a subset of the feasible region of the
path-based model. Consequently, path-based incentives exhibit a higher potential in pushing the
user equilibrium flow pattern toward system optimum, compared to link incentives. A column
generation-based iterative solution technique, which generates new paths at each iteration, is de-
vised to efficiently solve both optimisation problems. The numerical results in the Sioux Falls
network also highlight the superiority of path-based incentives in reducing total travel time and
emissions in urban transportation networks.
Keywords: Incentive scheme, System optimum, Traffic assignment, Traffic management.

1 Introduction

Motivation

Providing drivers with sensible route advice is considered a successful traffic management tool, with
the potential to reduce congestion (Kaysi, 1993; Fu, 2001; Cheng et al., 2020; Menelaou et al., 2021)
and, thereby, improve network efficiency and sustainability (Sunio & Schmöcker, 2017; Andersson
et al., 2018), although it may increase individual travel cost (distance and/or time) for some users
(van Essen et al., 2016). This implies that some drivers may need to follow routes longer than
desirable for the benefit of the community. This situation in which the total social benefit reaches
the highest level is called system optimum (SO) and is in contrast to user equilibrium (UE), which
aims at achieving the highest individual benefits (Mahmassani & Peeta, 1993). Studies estimated
a wide range (5% - 25%) of benefits, in terms of reduced total travel time (TTT), in typical
road networks when SO traffic flow is achieved (Peeta & Mahmassani, 1995; Wie et al., 1995;
Roughgarden & Tardos, 2002; Boyce & Xiong, 2004). Traditionally, an SO condition prioritises
the minimisation of TTT; however, with the recent growth in population and urbanisation, air
pollution has emerged as a significant challenge in cities that needs to be addressed.
It should be noted that SO is an ideal situation where a central authority is supposed to dictate
routes for all users, causing some users to divert from their (individual) optimal routes, leading
to increased (individual) travel times. Thus, a stimulus is needed to encourage such changes
in drivers’ behaviour. Road pricing (Bergendorff et al., 1997; Yang & Huang, 2004; Zangui et
al., 2015; Ren et al., 2020) has been used to push the UE flow pattern toward SO. However,
incentivising schemes for voluntary participation (Ettema et al., 2010; Leblanc & Walker, 2013;
Sun et al., 2020; Cohen-Blankshtain et al., 2022) have recently gained more popularity due to
public dissatisfaction (May et al., 2010) and inequitable welfare distribution across the population
(Levinson, 2010; Vosough et al., 2022) resulted from tolling. Due to limited resources, an efficient
allocation of incentives within a limited budget is crucial. Yet, optimally assigning incentives to
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achieve the highest network efficiency in a complex real traffic network can be challenging due to
the optimisation problem being computationally intensive.

Background

Achieving an SO traffic flow, Van Essen et al. (2019) showed that the drivers who comply with the
routing advice should take routes slightly longer than the shortest path. Still, a strong stimulus,
e.g., an incentive is required to push drivers to take a route that might be significantly worse than
their preferred (e.g., faster) route. Vosough & Roncoli (2024), Djavadian et al. (2014), and Klein
& Ben-Elia (2018) showed that drivers accept longer routes under incentive strategy, compared
to other stimuli for contributing to a more liveable, safer, and less polluted city, while Kröller
et al. (2021) showed incentives’ positive impact using real-world data. These findings imply that
employing incentives can play a vital role in the success of a routing advice system aiming at
steering flow toward SO.
One of the first studies investigating the application of link-based incentives to achieve SO has
been conducted in two small toy networks with 2 and 4 links (K. Cheng & Jiang, 1994). The study
showed that the difference in total travel times between UE and SO was flattened when the demand
increased beyond a certain threshold, indicating that the application of incentives may not have
economic significance beyond that threshold. This happens because when the entire network gets
congested, redistributing the traffic only puts an extra burden on different parts of the network.
Considering path-based incentives, Bie & van Arem (2009) investigated the impact of applying
them to designated safe routes on traffic network performance. A logit model was employed
to assign traffic to routes based on their generalised costs consisting of travel time, fuel cost, and
safety measures minus incentive. Their numerical results indicated that depending on the incentive
program setup, the incentive scheme can be beneficial or not. In another study, Ghafelebashi et al.
(2023) proposed a path-based personalised incentive chosen from a predetermined set to minimise
TTT under various budget limits and user participation levels of the incentive scheme. They showed
that the value of saved time was usually larger than the cost of offering incentives, however, for
large budget limits the value of saved time might be smaller than the amount spent on incentives.
Recently, Luan et al. (2023) conducted a comparison between link- and path-based incentives
to analyse their potential to reduce TTT. They formulated single-level optimisation problems
to compare the two types of incentives under budget limits and various participation levels of
drivers. Their numerical examples in two transportation networks showed that in most cases path-
based incentives outperformed link-based incentives, while for a low participation level of drivers,
the link incentive reduced TTT more than path incentives. We adopt a similar specification of
link and path incentive optimisation problems to compare the performance of these two types of
incentives. Nevertheless, our research differs in numerous aspects. First, our proposed solution
algorithm computes the shortest paths in each iteration, generating at least 10 paths for each
origin-destination (OD) pair, while Luan et al. (2023) enumerated only 3 paths for each OD
pair a-priori, resulting in the flow-independent shortest path. Second, we introduce a column
generation approach that solves the optimisation problem at each iteration of the algorithm using
a solver, while Luan et al. (2023) utilised a customised branch-and-bound algorithm to solve the
optimisation problem once. Third, even though the shortest path problem is solved at least 10
times1 in this research compared to only once in Luan et al. (2023) and a more complex network
is employed, our proposed approach significantly outperforms it in terms of computation time.
Fourth, rather than only targeting TTT, the objective function in our research accounts for other
social goals, including emissions reduction. Finally, we use theory to prove that link incentives
cannot outperform path incentives and in their best performance, link-based incentives work as
equal as path-based incentives.

Research Contributions

Despite the rich body of literature on incentivising drivers, a key research gap concerns the rationale
for selecting either link- or path-based incentives to manage urban traffic. With the emergence of
technologies that enable us to track travellers through their journeys and the widespread usage
of navigation apps, path-based pricing/incentive has become technically feasible. To the best of
the authors’ knowledge, little attention has been devoted to assessing the efficiency of link- and
path-based incentives and no study has yet shed light on the potential superiority of one incentive
type over the other. In this work, we bridge this fundamental gap as follows:

1This is to ensure solution stability, as shown in Table 2 of Section 4.
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1. We introduce two distinct optimisation problems aimed at maximising the efficiency of the
network, i.e., minimising TTT and total emissions, under both link- and path-based incentive
schemes within the constraints of a limited budget;

2. We propose an innovative solution algorithm capable of solving both link- and path-based
incentive optimisation problems accurately and efficiently in medium-sized transportation
networks;

3. We conduct a thorough comparison between link- and path-based incentives, offering valu-
able insights into their respective performances while concerning various social goals such as
minimising TTT and total emissions.

Together, these contributions advance our understanding of incentive-based approaches in traffic
management and pave the way for improved urban transportation strategies.

2 Problem Definition and Formulation

In this section, we formulate the path- and link-based problems as two single-level optimisation
problems called P1 and P2, respectively, to determine the optimal incentive schemes under budget
limitations.

Path-based and Link-based Incentive Optimisation Problems

We represent a transportation network by a graph (V,A), where V is the set of nodes and A ⊂ V ×V
is the set of links. Let W be the set of OD pairs, and let the travel demand be described by the fixed
number of vehicles travelling between w ∈ W . Table 1 defines all the parameters and variables
used in the formulated optimisation problems.
The single-level optimisation problem for path-based incentives called P1, with budget limit, B is
formulated as follows:

Z1 = min
f,ŷ

Σa∈A(xata) (1)

s.t.
Σp∈Pw

fp
w = qw ∀w ∈ W (2)

Σa∈Aδ
p
ata − ŷp − uw ≥ 0 ∀p ∈ Pw, w ∈ W (3)

(Σa∈Aδ
p
ata − ŷp − uw)f

p
w = 0 ∀p ∈ Pw, w ∈ W (4)

Σw∈WΣp∈Pw
fp
wŷ

p ≤ B (5)

xa = Σw∈WΣp∈Pw
δpaf

p
w ∀a ∈ A (6)

f , ŷ,u ≥ 0 (7)

The objective function, Z1, minimises the network total travel time wrt. path flows and incentives,
f and ŷ2. Constraint 2 guarantees conservation of vehicles3, Constraints 3 and 4 are the comple-
mentarity constraints ensuring Wardrop’s first principle with generalised travel times. Constraint 5
imposes the budget limitation, Constraint 6 maps path flows to link flows, and Constraint 7 ensures
non-negativity. Function Z1, accompanied by Constraints 2, 6, and 7, represents the SO problem
in a transportation network under adequate regularity assumptions.
We can similarly formulate the budget-constrained link-based incentive problem P2 with budget
B as follows:

Z2 = min
f,y

Σa∈A(xata) (8)

s.t.
Σp∈Pwf

p
w = qw ∀w ∈ W (9)

2It should be noted that for targeting emissions, Z1, must be replaced by total emissions produced in
the network.

3We acknowledge the potential risk of induced car demand associated with incentive schemes. In our
proposed method, we do not offer high incentives that could generate revenue for drivers, i.e., negative
travel costs. This restraint is guaranteed by Constriant 3. By refraining from assigning high incentives, we
can assume that the attraction of travellers from other modes to car trips is prevented, leading to inelastic
demand, qw.
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Table 1: Notation for variables and parameters
Symbol Definition

A Set of links
V Set of nodes
W Set of all OD pairs
qw Travel demand between OD pair w ∈ W
Pw Set of all paths between OD pair w ∈ W
ta Travel time on link a ∈ A
xa Vehicle flows on link a ∈ A
fp
w Vehicle flows on path p ∈ Pw between pair w ∈ W
ya Incentive on link a ∈ A
B Total budget available
ŷp Incentive on path p ∈ Pw between pair w ∈ W
uw Minimum travel time between OD pair w ∈ W
δpa Link-path incidence matrix

Σa∈Aδ
p
a(ta − ya)− uw ≥ 0 ∀p ∈ Pw, w ∈ W (10)

(Σa∈Aδ
p
a(ta − ya)− uw)f

p
w = 0 ∀p ∈ Pw, w ∈ W (11)

Σa∈Axaya ≤ B (12)

xa = Σw∈WΣp∈Pw
δpaf

p
w ∀a ∈ A (13)

f ,y,u ≥ 0 (14)

Similar to problem P1, the objective function, Z2, minimises the total travel time in the whole
network with the path flow, f, under link-based incentive, ya, with Constraint 9- 14 follow the same
structure as those of P1.

Differences between Path-based and Link-based Incentive Problems

Theorem: Total travel time obtained by optimally solving P1 is never higher than the total travel
time obtained from optimally solving P2 under the same budget limit of B.
Proof : Assume that the pair (x, y) satisfies 9 - 14, i.e., is a feasible pair wrt P2. We can show
that (x, y) also satisfies 2 - 7, i.e., that the feasible solution set of P1 encompasses the feasible
solution set of P2. Since the two optimisation problems have identical objective functions, P1
always results in flow patterns with total travel times at most as low as those of P2.
Assume incentive of ya is assigned to link a. All paths (and users) that traverse link a will
receive this incentive. Therefore, travelers on path p will receive a link-additive path incentive as
ŷp = Σa∈Aδ

p
aya. We can rewrite Constraint 10 as follows:

Σa∈Aδ
p
a(ta − ya)− uw = Σa∈Aδ

p
ata − Σa∈Aδ

p
aya − uw = Σa∈Aδ

p
ata − ŷp − uw, (I)

which results in Constraint 3.
With similar substitutions, we can show that Constraint 11 can be rearranged to result in Con-
straint 4. Now, we can rewrite Constraint 12 by substituting xa with its definition, i.e., xa =
Σw∈WΣp∈Pw

δpaf
p
w, as follows:

Σa∈Axaya = Σa∈AyaΣw∈WΣp∈Pwδ
p
af

p
w = Σw∈WΣp∈PwΣa∈Ayaδ

p
af

p
w = Σw∈WΣp∈Pw ŷ

pfp
w, (II)

which is equal to the path incentive budget constraint, i.e., Constraint 5.
Combining the two statements I and II shows that for any pair of (x, y) that satisfies Constraints 9
- 14, there is a pair (x, y =< Σa∈Aδ

p
aya >) that satisfies constraints 2 - 7. Therefore, the

feasible region of the optimisation problem P1 encompasses the feasible region of the optimisation
problem P2. Please note that since the incentives collected by drivers do not change, the link flows
remain identical for the two pairs.

3 Solution Algorithm

The incentivised UE problem with a budget limit presented in problems P1 and P2 can be solved by
employing a centralised approach in simple networks by enumerating all paths where the number of
paths is limited. In the case of a large-scale transportation network, the centralised approach is not
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useful since it is computationally expensive to enumerate all the paths of the network. Therefore,
a column generation approach is developed that is able to generate new paths as needed as the
algorithm proceeds. Note that the column generation-based approach in principle can lead to the
optimal solution if it iterates long enough to enumerate all the paths of the network. However, it
can be stopped when the improvement in two consecutive iterations falls below a certain threshold
resulting in a balance between computation time and solution quality.
To solve P1 and P2 in a complex network, we propose the following column generation method
that considers each path as a column, adds new columns at each iteration, and stops when the
minimum iteration number, N , is reached and the relative difference of total travel times in two
consecutive iterations falls below a predefined value, ϵ. The general steps of the proposed column
generation algorithm are as follows:

1. Initialisation:

1.1. Define values for N and ϵ.

1.2. For each OD pair w ∈ W , set Pw = ∅.
1.3. Set n = 1, y = 0, f = 0, x0 = x(f), and t0 = t(x0).

2. Shortest path: for each OD pair w ∈ W ,

2.1. Find the shortest path p such that p /∈ Pw, and

2.2. set P̄w = P̄w ∪ p.

3. User equilibrium: solve optimisation problem P1 or P2, and find traffic flows, f, and
corresponding incentive values, y.

4. Updating: set xn = x(f) and tn = t(xn).

5. Stopping criteria:

5.1. Calculate ϵ̄ =
|Σa∈A(xn

a t
n
a )−Σa∈A(xn−1

a tn−1
a )|

Σa∈A(xn
a t

n
a )

.

5.2. If ϵ̄ ≤ ϵ and n ≥ N stop, otherwise set n = n+ 1 and go to step 2.

Note that we generate a new path that does not belong to the current active path set at each
iteration of the column generation process to prevent getting trapped around a local optimum.
However, such a path cannot be found by solving a normal shortest path problem. We, therefore,
employ a shortest path algorithm that solves a mixed integer linear problem to minimize the total
link travel times while imposing a high penalty for choosing a path between OD pair w ∈ W that
already exists in the current active path set. Due to a lack of space, we refrain from presenting
the algorithm.

4 Numerical Experiments

The well-known Sioux Falls (SF) network, shown in Figure 1, is employed to show the ability of
the proposed algorithm to solve complex networks, the differences in performance of link- and
path-based incentives in a realistic traffic network, and the application of incentive schemes under
different social goals including TTT and total emissions. The link volume-delay function in this
network follows BPR function (HCM, 2000), ta(xa) = t0a(1 + 0.15( xa

Ca
)4), where t0a is the free flow

travel time in link a and ca its capacity in vehicles per time unit. The details of the links and OD
matrix are sourced from He et al. (2014). This network consists of 24 nodes, 76 links, and 552 OD
pairs. We employ the proposed column generation method to solve the two proposed optimisation
problems for this network. It is worth noting that incentives and budget are considered in the
same unit as travel time, which is in minutes.

Link and path incentives in SF network

As can be seen in Figure 2, for all budget considerations, path incentives consistently outperformed
their link-based counterparts. This finding highlights the superiority of the path-based approach
in achieving more favorable outcomes.
In order to compare the benefits associated with each incentive scheme, we employ a cost-benefit
analysis that can reveal the benefits we gain, i.e., the difference between TTT in a specific case and
a benchmark TTT, from the cost that we pay, i.e., the budget allocated to an incentive scheme
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Figure 1: Sioux Falls network

compared to a benchmark situation, which we define as a B/C index. Figure 3 represents the B/C
index in the SF network under both link- and path-based incentives where the benefit and cost of
each incentive scheme are compared to the previous one with a lower budget, i.e., incremental B/C
values. According to this figure, when the budget is small, the benefit of investing in the incentive
scheme outweighs its associated extra cost as the B/C values are higher than 1. For budgets over
18,000 in path incentives and 10,000 in link incentives, the benefits gained from a specific incentive
scheme, relative to the previous budget limit, are insufficient to justify the costs incurred. This
case study indicates that the marginal benefits associated with increasing the incentive budget are
getting gradually smaller (until negative).

The convergence behavior of the column generation algorithm

Looking into the convergence of the employed column generation algorithm, we can show the
efficiency of the proposed solution method is acceptable. As can be seen in Table 2, under a wide
range of budget limits, for both link and path incentives, the algorithm converges after a few
iterations with a maximum computation time of 7800 seconds. Still, the proposed algorithm works
better for the link incentive problem compared to the path incentive, especially under a small
budget limit that converges via 3 steps. However, we enforce the algorithm to iterate 10 times to
ensure that the algorithm is not trapped around a local optimum and its solution is stable and
consistent across multiple iterations.

Minimising total emissions

In this section, the objective function of problem P1, Z1, is turned to minimise emissions using
path incentives in the SF network. We assumed emissions are proxied by CO2, and the CO2
rate per vehicle kilometer traveled (veh-km) in link a is computed by Equation 15 introduced by
Dimitriou et al. (2009).

Ea = 72.73 + 33.98× 102/sa + 23.26× 10−3s2a, (15)

6



Figure 2: Total travel time of link- and path-based incentive schemes with various budget
limits in Sioux Falls network

Figure 3: Cost-benefit analyses for the link- and path-based incentive schemes in Sioux
Falls network

where sa is the average speed of link a in km/hr and Ea is in g/veh-km. This function used in
macroscopic problems, has a U-shaped dependence on vehicle speed, as shown in Figure 4 with
respective minima at 42 km/hr. (Kickhöfer & Nagel, 2016).
Using Equation 15, we also computed the total CO2 in the SF network when the objective is to
minimise TTT, as shown in Figure 5(a). Then, Figure 5(b) illustrates the total CO2 and TTT in
the SF network when the objective function in problem P1 is Z1 = minf Σa∈A(xaEala), where la
is the length of link a.
It can be seen that targeting only TTT leads to an increase in total CO2 emitted in the network.
On the contrary, targeting only emissions brings about increased TTT. This is due to the fact that
the minimum CO2 occurs when the average speed on a link is 42 km/h while for minimising TTT,
the higher the average speed the better. Figure 6 illustrates how an incentive scheme changes the
average speed to direct the traffic flow from UE toward SO by redistributing the traffic subject to
the budget limit. According to this figure, targeting TTT minimisation smooths vehicle statistics
and increases the average speed in most of the links but not necessarily in the direction of reducing
emissions. For instance, the average speeds on links between nodes 11 and 14, and 21 and 24 have
increased while the emissions also fall in a higher range according to Figure 4. However, in the
case of targeting CO2 minimisation, the changes in the average speeds occurred only to reduce the
CO2 emissions, such as decreased average speed of links between nodes 11 and 12.
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Figure 4: Emissions-speed curves for CO2, where s is the average travel speed in km/hr

Figure 5: Total emissions and travel time in the SF network under path-based incentives
with different objective functions
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Table 2: The error term, ϵ̄, computed in each iteration of the proposed column generation
algorithm

Budget (x 1000)
Iteration

5 30
Link incentive Path incentive Link incentive Path incentive

1 1 1 1 1
2 0.742 0.756 0.762 0.783
3 0.006 0.005 0.008 0.006
4 0 1.12E-14 3.32E-04 1.60E-04
5 0 0 0 3.57E-14
6 0 0 0 6.00E-05
7 0 0 0 6.69E-15
8 0 0 0 7.52E-15
9 0 0 0 0
10 0 0 0 6.27E-16

Figure 6: The changes in link speeds before and after implementing an incentive scheme,
where dark green arrows represent s > 50, light green is 45 < s ≤ 50, orange illustrates
35 < s ≤ 45, and red arrows are s < 35 km/hr.

5 Conclusions

In this paper, path- and link-based incentives are used to push the user equilibrium flow pattern
toward the system optimum in order to minimise total travel time and emissions in the network.
Wardrop’s first principle is applied to the generalised travel time, which is defined as travel time
minus link or path incentives. Both incentivising schemes are formulated as non-linear optimisation
problems with complementarity constraints and the objective of minimising total travel time or
total emission. The mathematical properties of the two models reveal that the feasible region of the
path-based optimisation problem encompasses that of the link-based problem. Since generating
all paths for a real-sized network is computationally expensive, an iterative column-generation-
based solution technique is proposed that generates a new path between each origin-destination
pair at each iteration. The results of the two optimisation problems for the Sioux Falls network
demonstrate their effectiveness in reducing total travel time and emission across the network under
different budget limits. Notably, the reduction rate under the path-based incentive is higher than
that under its counterpart link-based scheme.
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This study assumes that all drivers will accept the provided incentivised routes. Additionally, it
simplifies the optimisation problems by overlooking the elastic nature of travel demand and the im-
pacts of new technologies, such as connected and automated vehicles. Relaxing these assumptions
in future studies would yield more realistic results.
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