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Short summary

We provide an estimator for the perturbed utility route choice (PURC) model that works with
data at the level of individual trips. The estimator, labeled microPURC, is a nested fixed point
algorithm that combines a bias-corrected linear regression problem with the individual-level per-
turbed utility maximization problem. We establish the statistical properties of the microPURC
estimator and confirm these results with an experiment using simulated data. We then [this is
work in progress] apply the microPURC estimator to a dataset from the ongoing Danish national
road pricing experiment. This comprises a large number of individual trip trajectories, the national
road network, and a choice set that includes all possible paths through the network.

Keywords: transport network modelling; big data analytics; discrete choice modelling; perturbed
utility, microPURC

1 Introduction

This paper considers the problem of estimating a perturbed utility route choice (PURC) model
with trip-level data, using a large dataset of individual GPS traces through a large network.

The perturbed utility route choice model Fosgerau et al. (2022),Fosgerau et al. (2023) has several
advantages over competing route choice models. In particular, it does not require any choice set
generation but simply uses the complete network as it is. It generates realistic substitution patterns
directly from the network structure. Most of the network is inactive for any origin-destination pair.

If one is willing to aggregate data to the level of OD flows, the perturbed utility model is also
very fast and easy to estimate using linear regression. However, in general, this involves data loss.
It also limits the possibilities for incorporating individual-level information in the model. This is
an issue as individual-level information is often essential. For example, when dealing with road
pricing, it is essential to take into account that behavioral responses are affected by individual
income.

Using the data at the level of individual trips, without aggregation, allows all data to be used and
makes it possible to incorporate individual-level information. To achieve this, we must solve the
following problem.

The first-order condition for the perturbed utility route choice problem leads to an equation relating
the optimal flow vector to the network link cost vector. This equation is the basis for estimating
model parameters that determine link costs. If we could observe flows, then the model would be
estimable simply by regressing a certain transformation of the flow vector on link characteristics.
However, at the individual level, we observe paths and not flows.

With the microPURC estimator, we propose to resolve this issue as follows. Given a current
parameter estimate, we can solve the perturbed utility maximization problem to predict the flow
corresponding to each observed chosen path. Next, for each observation, we can extend the PURC
first-order condition with a bias-correcting term that depends on the observed flow. Finally, we
can update the parameter estimate via linear regression. The updated parameter estimate will
improve on the previous, due to the bias-correction term that incorporates information from the
observed chosen paths as well as correcting for the bias that results from flows being estimated
and not observed.
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This procedure can be repeated. On convergence, we show that it provides a consistent
√
N

asymptotically normal estimate of the model parameters. This is the microPURC estimator.

Brief literature review

Route choice models based on the additive random utility discrete choice model (McFadden, 1981)
for the choice between alternative routes are generally estimated by maximum likelihood. However,
it is a challenge for these models that the number of potential routes is extremely large. As
a consequence, it has been a priority to find ways to generate choice sets with good coverage to
reduce the bias that results from excluding choice alternatives (Prato, 2009). The perturbed utility
route choice model operates at the network level and does not require a choice set as input.

Another branch of route choice models is recursive models. In these models, the traveler is seen
as choosing a path link by link in a Markovian fashion. A recent series of papers has considered
estimation by maximum likelihood of what they term the recursive logit model and generalizations
building on the multivariate extreme value distribution (Fosgerau et al., 2013; Mai, Fosgerau, &
Frejinger, 2015; Mai, Frejinger, & Bastin, 2015; Mai, 2016). However, this estimation procedure
becomes computationally hard with large networks. The problem is that solving the Bellman
equations involves a large number of inversions of matrixes that inherit their size from the network.

2 Methodology

The perturbed utility route choice model

The PURC model describes the choice of route through a network for a traveler who makes a
single trip from an origin to a destination. The network is connected with nodes and links (N ,L).
Links are indexed by ij, where i and j are the start and end nodes. We also use v to index nodes.
The network structure is specified by a node-link incidence matrix A = {av,ij |v ∈ N , ij ∈ L} with
entries

av,ij =

 −1, v = i
1, v = j
0, otherwise.

For a flow vector x ∈ RL
+, flow conservation for a trip is expressed as Ax = b, where b ∈ RN has

entries that are zero except bv = −1 when v is the origin of the trip and bv = 1 when v is the
destination of the trip.

For each trip, we observe (y, Z, b), where y ∈ {0, 1}|L| is a vector indicating the links used and Z
is a matrix with a row for each network link and columns for network characteristics, such that
c = Zβ is a link cost vector. The matrix Z comprises network characteristics but can also include
interactions of traveler or trip-specific information with link characteristics. The link cost vector
is assumed to be positive at the true value of β, i.e. Zβ0 ≫ 0.

Given an origin-destination pair, the traveler chooses flow x that minimizes a perturbed cost
function. For a flow vector x ∈ R|L|

+ , we define the perturbation function as the sum of link-specific
perturbation functions

F (x) =
∑
ij∈L

Fij(xij). (1)

Each link-specific perturbation function Fij : R+ → R+ is assumed to be continuously differ-
entiable, strictly convex, and strictly increasing, with Fij (0) = F ′

ij (0) = 0 and range equal to
R+.

The optimal flow vector for the traveler given cost vector c is the solution to the the convex
minimization problem

x̂(c, b) = argmin
x∈RL

+

{
c⊤x+ F (x) |Ax = b

}
.
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Observed individual trips y are random, with expectation conditional on b, c equal to the optimal
flow at the true parameter β0. i.e.,

E[y|Z, b] = x̂ (Zβ0, b) .

This assumption implies that x̂ij (Zβ0, b) is the probability that a trip with origin-destination pair
b travels along link ij.

Optimizing behavior

To derive an estimator for β0, we begin by analyzing the generic traveler’s cost minimization
problem. Given cost vector c = Zβ, the Lagrangian for the perturbed cost minimization problem
is

Λ(x, η) = x⊤c+ F (x) + η⊤ (Ax− b) , x ∈ R|L|
+ . (2)

Let B̂ = B̂(x̂) = diag(1x̂>0) be the matrix with ones on the diagonal corresponding to interior
solutions for the link flows x̂ij . The first-order condition for the cost minimization problem for the
positive entries of x̂ can then be written

B̂
(
c+∇F (x̂) +A⊤η̂

)
= 0, (3)

where ∇F (x̂), the gradient of F , has entries F ′
ij(x̂ij).

Let P̂ = P̂ (x̂) be the projection matrix

P̂ = B̂ − (AB̂)+AB̂,

where (AB̂)+ denotes the Moore-Penrose inverse of AB̂. Pre-multiplying Eq. (3) by P̂ then yields
the following projected first-order condition, which is the starting point for our estimation strategy:

P̂ (c+∇F (x̂)) = 0. (4)

Estimation

Consider the residual sum-of-squares function

RSS(β) = E
[
∥y − x̂(Zβ, b)∥2

]
, (5)

At least in principle, we can recover β0 by minimizing this function, according to

Lemma 1 Under some regularity assumptions specified in the full paper, β0 is the unique minimum
of RSS.

However, the RSS is a very difficult function to minimize. We therefore seek an approach that
utilizes the problem structure to make estimation easier and not least much faster.

Based on the projected first-order condition (4), we will construct a map that has the true param-
eter as a fixed point. In case the map has multiple fixed points, it is straightforward to determine
which point minimizes the residual sum-of-squares.

Define first a function T as a first-order approximation to the projected first-order condition in the
direction of the choice variable y.

T (β, x, Z, y) = P̂ (x)
(
Zβ +∇F (x) +∇2F (x) · (y − x)

)
.

Next, define an iterative map β → Φ(β) by

Φ(β) ∈ argmin
β′

E
[
∥T (β′, x̂(Zβ, b), Z, y)∥2

]
. (6)

The mechanics of this map are the following. Based on a β, we compute the corresponding predicted
flow x̂(Zβ, b) Then T (β′, x̂(Zβ, b), Z, y) is the approximate projected first-order condition at the
candidate parameter β′. The function value Φ(β) is the value of β′ that minimizes the sum
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of squares of T (β′, x̂(Zβ, b), Z, y). Under our regularity conditions, the value Φ(β) is uniquely
determined for β in a neighborhood of β0.

The function T (β′, x̂(Zβ, b), Z, y) is linear as a function of the β′, which makes the iterative map
available in closed-form as

Φ(β) = −
(
E
[
Z⊤P̂Z

])−1

E
[
Z⊤P̂

(
∇F (x̂) +∇2F (x̂)(y − x̂)

)]
, (7)

where x̂ = x̂(Zβ, b) is the optimal flow corresponding to β, the projection P̂ is constructed based
on x̂, and E[Z ′P̂Z] is assumed to be invertible.

In the full paper we give a straightforward proof of the following

Lemma 2 Any point β∗ is a fixed point of Φ if and only if it satisfies the first-order condition

E
[
Z ′P ∗∇2F (x∗)(x̂(Zβ0, b)− x∗)

]
= 0, (8)

where x∗ = x̂(Zβ∗, b) and P ∗ = P̂ (x∗).

Lemma 2 shows in particular that the true parameter β0 is a fixed point of Φ. This observation
leads us to the following

Theorem 1 The true parameter β0 minimizes the residual sum-of-squares over the set of fixed
points of Φ, i.e.

β0 = argmin
β

RSS(β) s.t. Φ(β) = β. (9)

The iterative map Φ has a particularly elegant form when F is a quadratic function. We would
favor using

F (x) =
1

2
x⊤Lx, (10)

where L is a diagonal matrix of positive link lengths since this makes the perturbation function
invariant with respect to link splitting. In that case,

∇F (x) +∇2F (x)(y − x) = Lx+ L(y − x) = Ly,

such that the iterative map reduces to

Φ(β) = −E
[
Z⊤P̂Z

]−1

E
[
Z⊤P̂Ly

]
.

The flow x̂ enters only with the set of active flows into the projection matrix P̂ .

Implementation and convergence

A sample of trips would have observations (yn, Zn, bn), n = 1, . . . , N that are assumed to be i.i.d.
realizations of the random variables (y, Z, b). We suggest estimating β0 by the sample analog of
the procedure described above, i.e.

β̃ ≡ argmin
β

RSSN (β) s.t. ΦN (β) = β, (11)

where RSSN and ΦN replaces population expectations with sample averages in (5) and (6). Start-
ing from some initial parameter vector β̃(0), we then suggest the following Algorithm 1 for iterating
the sample version of Φ towards a fixed point.
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Algorithm 1: microPURC iterated algorithm

Step 0: Choose starting value β̃(0);

Step 1: Given β̃(t), compute x̂n
(t) = x̂(Znβ̃(t), b

n), and P̂n
(t) = P̂ (x̂n

(t));

Step 2: Compute β̃(t+1) = ΦN (β̃(t)), i.e.

β̃(t+1) = −
(
EN

[
Zn⊤P̂n

(t)Z
n
])−1

EN

[
Zn⊤P̂n

(t)

(
∇F (x̂n

(t)) +∇2F (x̂n
(t))(y

n − x̂n
(t))

)]
• Repeat step 1 and 2 until convergence.

Step 3: If different starting values lead to different fixed points, compare the residual sum of
squares. Define β̃ as the fixed point that minimizes RSS.

We go on to establish two theorems concerning the statistical properties of the microPURC algo-
rithm. We first show that our algorithm has at least one fixed point and that there is a neighborhood
from which it is guaranteed to converge to this fixed point. Convergence is quadratic, except for a
small error term that goes to zero as the sample size increases.

Theorem 2 For β̃(0) sufficiently close to β̃, the sequence β̃(t+1) = ΦN (β̃(t)) converges almost
quadratically to β̃, i.e. there exists C > 0 and a random variable ϵN such that∥∥∥β̃(t+1) − β̃

∥∥∥ ≤ C
∥∥∥β̃(t) − β̃

∥∥∥2 + ϵN

∥∥∥β̃(t) − β̃
∥∥∥ , (12)

where ϵN
p→ 0.

Theorem 2 only applies to the fixed point β̃ which minimizes RSSN . The next theorem establishes
consistency and asymptotic normality of β̃. This allows us to compute standard errors and conduct
inference on the parameter estimates that we obtain.

Theorem 3 The estimator β̃ is consistent,
∥∥∥β̃ − β0

∥∥∥ p→ 0 and
√
N -asymptotically normal

√
N(β̃N−

β0)
D→ N(0, H−1SH−1) where

H = E
[
Z⊤P̂Z

]
, S = E

[
Z⊤P̂ (y − x)(y − x)⊤P̂Z

]
.

The asymptotic variance of β̂ can be consistently estimated by replacing H and S by their sample
counterparts,

H̃ = EN

[
Zn⊤P̂nZn

]
, S̃ = EN

[
Zn⊤P̂n(yn − x̂n)(yn − x̂n)⊤P̂nZn

]
, (13)

where x̂n = x̂(Znβ̃, bn) and P̂n = P̂ (x̂n).

A consistent estimator of the standard error of β̃ is then σ̃ =
√

diag(H̃−1S̃H̃−1)/N .

3 Results and discussion

Simulated experiment

We have carried out a simulation study to verify that our microPURC estimator is indeed capable
of recovering known true parameters from simulated data.

We have set up an experiment using a grid network with 288 links and 81 nodes (Figure 1). We
use the entropy perturbation function (14) for validation:

Fij(xij) = (1 + xij) ln(1 + xij)− xij (14)

The true parameter vector is β = [1/2, 1/10, 1/4, 1/10]. We draw independent variables Z repre-
senting four link attributes.
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A subset of the nodes are designated as centroids, which can be endpoints for a trip. OD pairs
are randomly sampled from the centroids. This ensures that randomly sampled trips are not too
short. For each OD pair, we compute x̂(Zβ, b) with the true parameters β0, denoted as x̂∗.

We then generate synthetic path choice observations y as random walks on the subnetwork with
positive link flows x̂∗

ij > 0,∀ij ∈ L. This subnetwork is necessarily acyclic since link costs are
positive. Consequently, the synthetic observations can be generated by departing from the origin
node and choosing the outgoing link with probabilities

pij =
x̂∗
ij∑

k:(i,k)∈L x̂∗
ik

.

Furthermore, for each OD pair, the random walk terminates exactly at the destination node since it
is the only node without any outgoing link in the active subnetwork. Each observation y ∈ {0, 1}|L|

is an incident vector, where yij = 1 if observation traverses link ij, and yij = 0, otherwise.

In the simulation experiment, we test the effects of sample size. We compute the empirical mean
and standard deviation of the estimated beta β̃ over 10 replications.

Table 1: Simulated experiment (10 replications)
Mean microPURC estimates (std. in the bracket)

Sample
size

β̃ RMSE

10 1.4122 0.5919 1.0398 0.4156 7.5385
(0.3864) (0.2268) (0.4026) (0.2625)

100 0.5534 0.0875 0.2795 0.1326 0.6388
(0.0097) (0.0100) (0.0112) (0.0089)

200 0.5180 0.0940 0.2628 0.0889 0.4348
(0.0052) (0.0024) (0.0071) (0.0043)

500 0.4923 0.1132 0.2387 0.1218 0.2895
(0.0020) (0.0018) (0.0026) (0.0016)

1000 0.5002 0.1153 0.2368 0.0984 0.1880
(0.0010) (0.0006) (0.0011) (0.0009)

2000 0.5047 0.0945 0.2447 0.0875 0.1559
(0.0005) (0.0005) (0.0007) (0.0005)

5000 0.5016 0.0984 0.2540 0.1016 0.0815
(0.0002) (0.0001) (0.0003) (0.0001)

The results show that our microPURC estimator can recover the preset parameters well when the
sample size is above 100. Moreover, the standard deviation of the parameter estimates decreases
as the sample size increases, demonstrating the estimator’s asymptotic property. This is also
illustrated by the decreasing norm (the RMSE) which decreases with the sample size at the rate
predicted by our Theorem 3.

Application to real data

This is work in progress. We have access to a large database of GPS traces of car trips and
corresponding network data. The data are from a national road pricing experiment that is currently
ongoing in Denmark. The implementation is ongoing.

4 Conclusions

We have formulated the microPURC estimator, which is suitable for estimating the parameters
of the perturbed utility route choice model with trip-level data. We have established the sta-
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Figure 1: Grid network

tistical properties of the estimator. In particular, the microPURC estimator is consistent and√
N -asymptotically normal.

Our simulation experiment is successful. It shows that the microPURC estimator is able to recover
the true parameters with high precision, even with moderate sample sizes.

We expect our application to real data to demonstrate that the microPURC estimator is feasible
with the large networks and data sets that are met in practice. This will make the power of
the perturbed utility route choice model available for practice, allowing us to use a model that
generates realistic substitution patterns directly from the network structure, using the complete
network as it is while not requiring any choice set generation.
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