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SHORT SUMMARY 

Despite the potential benefits of smart bicycle technologies in improving cyclists' safety, research 

on cyclists' attitudes and willingness to pay is missing. This paper is the first to examine cyclists' 

preferences and willingness to pay for smart bicycle technologies to enhance safety and aims to 

shed light on their development and adoption. Data from a stated choice survey with 1235 partic-

ipants from five European countries was analysed. A latent class choice model (LCM) was used 

to seek random heterogeneity using explanatory variables, such as sociodemographic character-

istics, safety-related factors, and geographic areas. Two classes (technology cautious and tech-

nology prone) emerged from the LCM. Results indicate that there is a significant heterogeneity 

in preferences among people, which a number of variables can partially explain. Participants of 

this study are willing to pay an additional price of up to 200 € for advanced bicycle technologies 

to increase their safety. 
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1. INTRODUCTION 

Cycling is flourishing worldwide, and its rapid increase is manifest (Buehler & Pucher, 2023). In 

Europe, the number of people who use bicycles has risen and will continue in the coming years 

due to the increasing living costs and the climate change-oriented tendency towards more sustain-

able mobility solutions (Buehler & Pucher, 2021; Schleinitz & Petzoldt, 2023; Shimano, 2022). 

Electric bicycles (e-bikes) are the new trend, and they overrun the bicycle market in many Euro-

pean countries, encouraging people to ride more and further thanks to motor assistance (Fishman 

& Cherry, 2016). However, in parallel to the increase in cycling, the number of bicycle crashes 

also increases, especially those involving e-bikes, although there is an ongoing reducing trend in 

the number of motor-vehicle crashes (European Transport Safety Council, 2020; Schepers et al., 

2020; Swov, 2022). 

In an attempt to increase cycling safety, comfort and reliability, a growing stream of research 

focuses on emerging technologies consisting of sensors, radars and advanced information and 

communication technologies (ICT) embedded in bicycles, mainly on e-bikes (Kapousizis et al., 

2022; Oliveira et al., 2021). Even though safety-enhancing bicycle technologies are rapidly de-

ployed in research environments, such technologies are not commercially available yet. Various 

reasons can affect their penetration and deployment in the market. The key elements are the users' 

acceptance and willingness to pay for smart bicycle technologies. 
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To address the critical knowledge gaps mentioned above, the objectives of this study are three-

fold: 1) investigate user preferences and the willingness to pay for smart bicycle technologies 

enhancing cycling safety, 2) examine the role of different European countries, which vary in cy-

cling culture, on preferences regarding the smart bicycle technologies, and 3) identify the socio-

demographic variables that explain the sensitivities among users’ preferences. For this purpose, a 

stated choice survey was conducted in five European countries, Austria, Belgium, Germany, 

Greece, and the Netherlands, to investigate users’ preferences. To the authors' knowledge, this 

paper is the first study in the literature to investigate user preferences and willingness to pay for 

smart bicycle technologies with a large-scale European survey. 

2. METHODOLOGY 

The main core of this study was to capture people's preferences and investigate willingness to pay 

(WTP) for smart technologies to increase safety on e-bikes. For this purpose, a stated choice (SC) 

method was used to capture participants’ choices among hypothetical alternatives to examine their 

preferences (Train et al., 2019). A web-based survey was conducted in five European countries-

translated in five languages (English, German, Greek, Dutch and French), which was distributed 

in Austria, Belgium, Germany, Greece and the Netherlands, between November 2022 and January 

2023. Countries were not selected randomly; on the contrary, they were chosen due to the varying 

quality of cycling infrastructure and cycling culture to understand users’ perceived safety in dif-

ferent scenarios. The focus group of the survey comprised people who already use an e-bike or 

are willing to buy one. This group was chosen to collect more realistic results than asking people 

not interested in cycling. In total, 1235 responses were collected and the sample distribution can 

be found in Table 1.  

Table 1: Sample 

Variable Austria Belgium Germany Greece Netherlands 

Number of respondents 71 (6) 188 (15) 112 (9) 139 (11) 725 (59) 

Gender      

Male 51 (72) 99 (53) 78 (70) 100 (72) 342 (47) 

Female 17 (24) 87 (46) 33 (29) 38 (27) 371 (51) 

Non-binary 2 (3) 0 (0) 0 (0) 0 (0) 4 (1) 

Other/prefer not to answer 1 (1) 2 (1) 1 (1) 1 (1) 8 (1) 

Age      

18-29 2 (3) 10 (5) 10 (9) 16 (12) 32(4) 

30-39 13 (18) 24 (13) 14 (13) 29 (21) 80 (11) 

40-49 10 (14) 26 (14) 16 (14) 44 (32) 72 (10) 

50-59 23 (32) 35 (19) 36 (32) 34 (24) 153 (21) 

60-69 18 (25) 60 (32) 29 (26) 16 (12) 201 (28) 

>70 5 (7) 33 (18) 7 (6) 0 (0) 187 (26) 

Education      

Low (high school or lower) 25 (35) 49 (26) 35 (31) 37 (27) 363 (50) 

High (university or higher) 46 (65) 139 (74) 77 (59) 102 (73) 362 (50) 

Average country income      

Below average 33 (46) 79 (42) 52 (46) 70 (50) 468 (65) 

Above average 38 (54) 109 (58) 60 (54) 69 (50) 257 (35) 

Numbers in parenthesis indicate percentage (%) 
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Stated choice design 

The survey’s main core was the SC experiment. Participants initially received a short introductory 

text for the aim of the survey. The survey was divided into three parts: 1) screening questions and 

mobility habits, 2) a short explanation and illustration of how an e-bike with smart technologies 

looks like with explanatory questions and the six hypothetical choice tasks, and 3) sociodemo-

graphic questions at the end of the survey. 

This SC aimed to examine the trade-off among smart bicycle technologies investigated by Ka-

pousizis et al. (2022). Since this study aimed to calculate the WTP for smart technologies enhanc-

ing cycling safety, we used four attributes with three levels each, except the cost, which had four 

levels. We consulted bicycle experts to set a realistic price range for these systems. Hence, the 

price scale used in this design ranged from 400 € to 1000 €. 

An orthogonal experimental design was developed using the Lighthouse studio (Sawtooth 

Software, 2022). Each respondent received six choice tasks, consisting of two alternatives each 

and the opt-out choice (no choice). Table 2 presents the SC attributes and attribute levels. 

Table 2: Attribute level for the CE 

Attributes Attribute levels 

Assistance systems Call emergency unit Automated call to the emergency unit in case of 

an accident. 

Automated call to your emergency contacts in case of an accident 

Smart navigation system (safe/comfortable routes) 

Automatic speed adjustment systems In busy streets, cycle paths, near schools, etc 

In high crash-risk locations (e.g. dangerous locations) 

To keep a safe distance from a vehicle ahead 

Collision avoidance (warnings) Vehicles/obstacles in front side 

Vehicles behind you (approaching dangerously) 

Blind Spot detector (left and right assist) 

Cost 400 € 

600 € 

800 € 

1000 € 

 

3. RESULTS AND DISCUSSION 

The Apollo package (Hess & Palma, 2019) in R (R Core Team, 2023) was used to estimate the 

LCM. Table 3 presents the results LCM.  

Class 1: Technology cautious. This class has a negative cost-utility of -0.0072, and most attrib-

utes are negative. This means that this class includes more cost-sensitive participants and a low 

preference for smart bicycle technologies. In detail, we found only two positive coefficients, smart 

routes, and collision avoidance blind spot, with the former attribute level having a higher coeffi-

cient (0.7450) and a significant t-ratio (4.5496) compared to the latter (collision avoidance blind-

spot) with a coefficient of 0.0093. The rest of the attribute levels have negative coefficients, with 

the automatic speed limit system being negative and significant at a high confidence interval level. 

This means the latter is the least preferred option among the other attribute levels. 

Class 2: Technology prone. This class includes less cost-sensitive participants (-0.0013) and 

shows that all attributes have positive utilities, meaning participants in this class have a positive 

attitude toward smart bicycle technologies. In general, participants in this class have a higher 
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preference for the technologies than participants in Class 1. In detail, we see that smart routes, 

collision avoidance rear-side, and blind spots have positive and significant t-ratios. Both collision 

avoidance systems have the highest utility in this class (0.2626 and 0.2627), while the assistance 

smart routes have a utility of (0.2446). Emergency call system, automatic speed limit and auto-

matic speed risky areas systems are still positive but with insignificant t-ratio (below 1.96). More-

over, the cost is the only negative coefficient in this class with a high and significant t-ratio (-

7.8445). 

Table 3: Model estimation 

 LCM Class 1 LCM Class 2 

 Coeff. Rob. 

Std.err. 

Rob. 

t-ratio 

Coeff. Rob. 

Std.err. 

Rob. 

t-ratio 

Assistance emer-

gency unit 

0 (ref.)  NA 0 (ref.)  NA 

Assistance emer-

gency call 

-0.1329 0.0993  -1.3382 0.0328 0.0489 0.6716 

Assistance smart 

routes 

0.7454 0.1657 4.5496 0.2446 0.0629 3.8951 

Automatic speed 

safe distance 

0 (ref.) NA NA 0 (ref.) NA NA 

Automatic speed 

limit 

-0.3187 0.1386 -2.2990 0.0296 0.0553 0.5352 

Automatic speed 

risky areas 

-0.2391 0.1399 -1.7085 0.0805 0.0577 1.4450 

Collision front side 0 (ref.) NA NA 0 (ref.) NA NA 

Collision rear side -0.0148 0.1055 -0.1408 0.0519 0.0511 5.1549 

Collision blind 

spot 

0.0093 0.1156 0.0808 0.2627 0.0565 4.6450 

Cost -0.0072 0.0004 -20.1834 -0.0013 0.0002 -7.7380 

Choice component*Variables 

Constant Reference Class 1 0.8857 0.4813 1.8403 

Country level       

Austria    -0.2143 0.2717 -0.7889 

Belgium    -0.0598 0.1781 -0.3357 

Germany    -0.1390 0.2237 -0.6215 

Greece    0.9906 0.2416 4.0994 

Netherlands (ref.)    0 (fixed) NA NA 

Sociodemographic    

Education (high)    -0.4863 0.1347 -3.6099 

Income (high)    0.5472 0.1343 4.0739 

Other variables  

Technology 

friendly 

   0.3224 0.1370 2.3528 

Crash    -1.1207 0.4731 -2.3690 

Class weight 52%   48%   

Parameters      25 

Final Loglikeli-

hood 

     -5815.76 

Rho-square      0.285 
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AIC      11681.52 

BIC      11854.29 

Individuals      1235 

Observations      7410 

Furthermore, we calculated the posterior class analysis, which derived from the choices partici-

pants made and the sample- (Amaris et al., 2021; Greene & Hensher, 2003; Hess, 2014) and 

revealed further insights into the probability that a person belongs to a specific class. Figure 1 

shows the posterior analysis and illustrates variations in the class allocation. 

The posterior class allocation shows that 56% of the participants who belong to the age group 

between 18-39 fall in Class 2 – Technology prone, while the age group older than 60 falls by 57% 

in Class 1 – Technology cautious. This shows that the latter age group is more neutral toward new 

technologies. Regarding the gender effect on the posterior class analysis, we analysed males and 

females due to the low number of the other genders; we found that males and females have a 

higher concentration of Class 1 (51% and 53%, respectively).  

Participants living in high-density areas are more likely to fall in class 1 by 52%. We also found 

that participants living in areas with the absent of cycling infrastructure are more likely to fall into 

Class 2 (56%), while those living in areas with dense cycling infrastructure are more likely to fall 

into Class 1 (53%). Note that we were able to estimate the level of cycling infrastructure based 

on the OSM network data since we asked participants for their 4-digit postal code. 

In addition, we calculated the posterior probability for other variables that were obtained from the 

survey. In detail, based on a Likert scale question, we asked participants to state whether they live 

in areas lacking cycling infrastructure, “Lack infra (survey)” and thus we estimated the perceived 

level of cycling infrastructure as well as the objective as we mentioned above, based on the OSM 

data. However, we found that participants' responses on this variable are almost equally distrib-

uted among classes, with a favour over Class 1 (51%). Participants who have used Advanced 

Driving Assistance Systems (ADAS) are more likely to fall into Class 2 (53%); participants who 

carry their children on a bicycle are more likely to fall into Class 1 (57%). Class 1 is considered 

cost-sensitive and less likely to favour advanced technologies since only smart routes show a high 

utility.  

 

Figure 1: Posterior class analysis 
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It is apparent that Class 2 – Technology prone has mainly higher utilities, which is reflected in 

higher WTP for all functionalities compared to Class 1 – Technology cautious; thus, Class 2 has 

a higher expected WTP. More specifically, people who fall in Class 2 are willing to pay around 

187 € for the assistance smart routes compared to only 25 € for the assistance emergency call. 

People in Class 1 are more likely to pay around 104 € for a smart route system and around 18 € 

for an emergency call system. Regarding the collision avoidance system, Class 2 has a higher 

WTP for the collision avoidance rear side and collision avoidance blind spot. Participants in this 

class are willing to pay around 201 € for each of those systems. However, participants in Class 1 

are willing to pay around 2 € for a collision avoidance rear-side system and 1 € for a collision 

avoidance blind-spot system.  

Figure 2: Willingness to pay 

 

4. CONCLUSIONS 

With the current trend towards sustainable mobility, cycling usage grows and more people are 

expected to use e-bikes for transportation. This will increase the kilometres ridden per person and 

lead to more crashes since people are unfamiliar, for instance, with the high speed of e-bikes. This 

study delves into the potential of cycling technologies to enhance e-bike safety and explores e-

bike users' preferences and willingness to adopt such technologies. Notably, it presents novel 

findings regarding e-bike user preferences for safety-enhancing technologies, providing valuable 

insights for improving e-bike safety. 

We estimated a latent-class model using a stated choice survey’s data from five European coun-

tries with varying cycling rates, cycling behaviour, and cycling infrastructure. The results of this 

study contribute to the literature regarding bicycle technologies that can reduce crash risk. The 

main findings of this paper are summarised as follows: 

• This study investigated people’s opinions of smart bicycle technologies and found that 

there are indicators that smart bicycle technologies are perceived positively by an im-

portant portion of participants in this study. 
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• The Latent Class Model indicates two classes: Class 1 - Technology cautious, participants 

who do not have a positive attitude toward advanced technologies, and Class 2 - Tech-

nology prone, participants with a higher preference for advanced technologies. 

• WTP for smart bicycle technologies showed significant differences between the two clas-

ses, with participants falling in Class 1 willing to pay up to 100 € and participants falling 

in Class 2 up to 200 €.  

• Heterogeneity can partially be explained by linking sociodemographic, geographical, and 

other variables, such as the participants' technology friendliness and safety-related ques-

tions, to the class allocation. 
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