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Short summary

Traffic forecasting has been a fundamental task in transportation research, with many methods
and datasets mainly based on highway loop detector data. In recent years, drones are becoming a
favorable choice for urban traffic monitoring, due to their flexibility, high data quality and larger
spatial coverage. However, the lack of public datasets has made the joint use of drone and loop
detector data fairly under-explored. Therefore, we create a novel simulated multi-source dataset
SimBarca for urban traffic prediction, featuring speed measurements from both drones and loop
detectors. We provide a graph-based baseline model HiMSNet to handle multiple input modalities
and evaluate it along with two benchmark predictors. Our analysis shows that HiMSNet achieves
good performance for regional speed prediction, but the road segment-level prediction still requires
more in-depth efforts.
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1 Introduction

Knowing the current traffic states and their future evolution is essential for traffic management
and control in Intelligent Transportation Systems (ITS). Therefore, predicting the future traffic
states of a transportation network, i.e., traffic forecasting, has been the central concern of many
research works in literature. The challenges mainly come from the complicated spatial and temporal
correlations of traffic states. Since the transportation network naturally has a graph structure, a
vast majority of existing methods are built with Graph Neural Networks Jiang & Luo (2022).
In the pioneering work Diffusion Convolutional Recurrent Neural Network (DCRNN) Y. Li et al.
(2018), the temporal dependencies are learned by a recurrent neural network, whose layer has an
embedded module to capture the spatial correlations by a diffusion process over the road network.
Later, this design paradigm has been improved from various perspectives. For example, Graph
WaveNet Z. Wu et al. (2019) develops an adaptive graph to learn the spatial correlations between
the sensors, and TwoResNet D. Li et al. (2022) addresses regional traffic with a low-resolution
module at macroscopic scale, and the microscopic traffic is handled by a high-resolution module.

Owing to constraints in data availability, many existing methods are trained and tested with
highway loop detector data, e.g., METR-LA and PEMS-Bay Y. Li et al. (2018). In urban areas,
the road network has denser connections and more complicated traffic dynamics, and therefore
the forecasting task is more challenging. Recently, Unmanned Aerial Vehicles (UAV) or drones
are emerging as a novel solution to information collection in ITS Butilă & Boboc (2022), as they
can flexibly fly over an area of interest and record high-quality videos. At the same time, the
growing power of Computer Vision, Artificial Intelligence and computational resources have made
it possible to automatically and efficiently extract object information from the captured videos.
These advantages have empowered drones to gather rich and accurate information from a large
spatial region, making them a preferable choice for urban traffic monitoring. Specifically, the
pNEUMA experiments have started the understanding of urban congestion evolution through the
analysis of video data captured by a swarm of drones over a large area in the city center of
Athens E. Barmpounakis & Geroliminis (2020). The drone-captured videos present clear views of
the monitored areas, and most vehicles on the roads can be clearly identified by computer vision-
based object detection and tracking X. Wu et al. (2021). Then, traffic variables can be accurately
computed for all visible roads in the field of view (FOV) E. N. Barmpounakis et al. (2019), resulting
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in a great advantage compared to grounded sensors, e.g., loop detectors and CCTV cameras, whose
scopes are limited to the roads with installed facilities.

The high-quality data from drones can provide solid grounds for traffic state prediction, which
can be an additional asset to the existing traffic forecasting methods based on loop detector data.
However, to the best of our knowledge, no public dataset has provided urban traffic data from
drones and other sensors with matching areas and time spans. Besides, a new data modality
will also introduce the challenge of combining multiple input sources, which can not be trivially
handled by existing methods. This paper proposes to address these gaps with a novel dataset and
a new baseline model for multi-source traffic prediction. In summary, the main contributions are
as follows:

1. We introduce SimBarca, a novel simulation dataset that contains traffic speed data from
drones and loop detectors in the city center of Barcelona. The dataset contains two prediction
tasks, i.e., the prediction of regional and road segment-level speed.

2. We propose a flexible model architecture for road segment-level speed prediction, which con-
sists of a local module for data fusion and a global module for spatial dependencies learning.
We further extend the model with an additional branch for regional speed prediction.

3. We provide experiments and analysis to evaluate the model on the proposed multi-source
dataset, and set an example for the evaluation of multi-source urban traffic prediction.

2 Methodology

This section will introduce the formulation of the multi-source traffic prediction problem, the
process of creating the dataset from simulated vehicle trajectories, as well as the architecture of
the baseline model.

Multi-Source Traffic Prediction

The traffic states of a transportation network can be measured by multiple sensors (information
sources). Suppose at time t, the network traffic states X are observed with method m at location
p, and the measured value is v. This measurement procedure can be described as

v = Om(X, t, p), (1)

where Om generally represents the physical or statistical process to obtain the measurement.

In a real-world system, the true X is often unknown, and the available information from one
measurement is (t, v,m, p). Let a single measurement be si = (ti, vi,mi, pi) where i is an index.
The modality indicator mi ∈ {1, 2, ...,M}, and the location indicator pi ∈ {1, 2, ..., P}, if there are
M different modalities and P different locations in total. All data collected during a time interval
is therefore a Multi-Source Time Series (MSTS) S = {s1, s2, . . . , sn}.

An MSTS is considered synchronized if, for any time step with records, the measurements with all
modalities on the same variable are available at all locations. Mathematically, that is ∀ tj , j ∈ N,
the equation

|{(ti, vi,mi, pi)|ti = tj , pi = pk}| = M (2)

holds for all pk ∈ {1, 2, ..., P}. However, this is not realistic mainly because different modalities
can have different frequencies and spatial coverages. Besides, different locations (graph nodes) are
connected by the road graph G(V,E), which introduces spatial correlations.

A dataset D is a collection of MSTS Si, the corresponding labels yi and the road graph G: D =
{(S1,y1), (S2,y2), ..., (SN ,yN );G}. The exact form of yi will depend on the task (e.g., forecasting,
interpolation and imputation), and more details will be provided in Section Experiment Settings.
Suppose we use a neural network f parameterized by θ to learn to predict y using S and G, the
training loss can be generally noted as:

L(θ,D) = E(S,y)∈D [l(y; fθ(S,G))] , (3)

where l is a distance function.
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Dataset Creation and Preprocessing

In this work, we generate simulation data using the microscopic traffic simulator Aimsun Casas et
al. (2010) and its road network for central Barcelona. As shown in Figure 1, the network consists
of many road segments and intersections. Aimsun can provide fine details of the road traffic, which
allows great flexibility for subsequent processing and analysis. Concretely, there are three types of
available information:

1. Network topology and the geometry of road segments and intersections.

2. Vehicle locations at each simulation time step, referenced within segments or intersections.

3. Vehicle entry and exit times for each road segment.

Figure 1: The road network of central Barcelona in Aimsun.

In Aimsun, the vehicles are generated according to an OD matrix, where an element means the
number of vehicles going from an origin to a destination in the time period of the demand. However,
the simulator provides only one such matrix, which can limit the diversity of the data. Therefore,
we take the non-zero elements (leaving the zeros untouched) and apply the following random
augmentations to have more diversified simulations: a) randomly set an element to zero, b) add a
random percentage to the element, and c) multiply all elements by a common but random factor.

Inductive loop detectors can only measure vehicle speeds at certain points, as they are installed at
fixed locations. Since vehicles can change their speeds within a road segment, the speed measure-
ments of a loop detector often cannot represent the whole segment. On the contrary, drones can
capture nearly all vehicles in their FOV, therefore it is possible to compute accurate segment-level
speeds by using the vehicle trajectories. In this paper, we refer to these two types of speeds as
point speed and segment speed respectively, and both of them can be extracted with the trajectory
data from microscopic simulation.

Time 𝑡 𝑡ଵ 𝑡ଶ 𝑡ଷ 𝑡ସ 𝑡௨௧
Pos ൈ 𝑥ଵ 𝑥ଶ 𝑥ଷ 𝑥ସ ൈ
Speed ൈ 𝑣ଵ 𝑣ଶ 𝑣ଷ 𝑣ସ ൈ

loop detector

Vehicle 𝑖 Trajectory split ሺ𝑖, 𝑡ଵ, 𝑡ଶ, 𝑥ଵ, 𝑥ଶሻ

Figure 2: Available trajectory information for a road segment

Figure 2 shows an example road segment along with a vehicle trajectory. At each simulation time
step (t1 ∼ t4), the vehicle position and speed are known. But we try to avoid using the speed
information and assume constant speed between the two known positions. Because in reality, the
vehicle speeds are not directly measured from drone videos or images, but are calculated using the
vehicle locations and corresponding timestamps. However, for the entry and exit points, only the
timestamps are known, thus the positions have to be extrapolated from the closest known positions
(e.g., the vehicle moves at speed v1 from tin to t1).

We compose a trajectory split (i, ts, te, xs, xe) using two adjacent points, which means vehicle i
travels from position xs to xe between time ts and te. Then, the trajectory splits can be grouped

3



by different time resolutions (e.g., every 5 s for drones and 3 min for loop detectors) to simulate
the update frequency of drone data and loop detector data, or by spatial region to provide regional
traffic data. For segment speed, we sum the travel distance ∆x = xe−xs and travel time ∆t = te−ts
of all vehicles in the road segment, and compute the segment speed as

v̄s =

∑
∆x∑
∆t

. (4)

For a loop detector installed d meters from the start. If xs < d < xe, then this vehicle is detected.
We count the number of detected vehicles n in a simulation time interval, and arithmetically
average their speeds to get point speed as

v̄p = (
∑ ∆x

∆t
)/n. (5)

Using this method, we compute these two types of speeds for all road segments in the road network.

Architecture of the Baseline Model

Figure 3 shows the structure of our baseline model HiMSNet, which is a Hierarchical Multi-Source
Network for traffic prediction. This architecture consists of a Global Message Exchange (GME)
module to learn the spatial correlations between different locations, and a Local State Evolution
(LSE) module to handle temporal dependencies and information fusion at each location.

The input data can be represented by a graph structure, where a node corresponds to a road
segment, and an edge indicates the connection between two road segments. In the LSE module,
the temporal encoder He will take S[:, p], i.e., the MSTS at location p (modalities marked in
colors), and separately encode the time series of each modality into a unified representation zp.
Then, zp will go through a message encoding layer R1 and become a message to be shared with
other locations. The GME module will then take the messages from all locations (Z), use its
encoder Fe and decoder Fd to compute the new feature with exchanged information (Q). The
message decoding layer R2 will take the element in Q corresponding to location p, and concatenate
it together with the elements in zp to form a joint feature qp. Finally, the temporal decoder Hd

will take qp and predict the future traffic states ŷp.
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Figure 3: General structure of HiMSNet.

We extend HiMSNet with an additional branch (Figure 4) for regional traffic prediction, which can
be helpful in regional traffic control. Given a defined region I, the regional branch will take the
average of joint feature qp for all p ∈ I as the regional representation qI , and predict the regional
average traffic state ŷI with the prediction module HI .

To constraint model complexity, the LSE module is shared among all locations, and similarly in the
regional prediction, all regions will share the same HI . The training losses for both segment-level
and regional prediction branches are MAE losses, and the total loss is the unweighted sum of the
two branches.
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Figure 4: Regional prediction branch

3 Results and discussion

This section will provide more detailed description of the experiment settings, model implementa-
tion and evaluation.

Experiment Settings

In our experiments, each simulation session lasts for 4 hours with 0.5s time step, but only the first
90 minutes have traffic demand (including 15 minutes warm-up). That means no vehicle will be
generated after 90 minutes, but the vehicles already on the road will continue to their destinations.
To avoid training with nearly-empty traffic data, we truncate the simulation data 2 hours after the
warm-up. Then, the samples are generated using a 1-hour sliding window, with the first half as
input and the second half as prediction window. We run 101 simulations with 101 different random
seeds for vehicle generation and demand matrix augmentation, and split the data into training and
testing sets with a ratio of 3:1.

SimBarca provides two input modalities in a training sample: segment speed from drone observa-
tions and point speed from loop detectors. For drone speed, we sum up the vehicle travel distance
∆x and travel time ∆t every 5 seconds to compute the segment speed v̄s, using Equation 4. For
loop detector speed, we set the detector at the middle points and average the speeds of all detected
vehicles every 3 minutes. To construct the target sequences in segment speed prediction, we apply
Equation 4 every 3 minutes in the 30-minute prediction time window, resulting in 10 prediction
steps. For regional speed prediction, the same equation is applied after aggregating all road seg-
ments in the same region every 3 minutes. Both in input and output modalities, the speed is
marked as -1 to indicate missing values, when no vehicle is observed during the period. We avoid
using zero as the missing value because when vehicles are stopped at red lights, the calculated
speed can indeed be a valid zero value.
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Figure 5: Clustered regions with K-Means algorithm, coordinate format EPSG:32601. A
dot in the scatter plots corresponds to the center point of a road segment.

We use K-Means to cluster all the road segments into 4 regions based on spatial distances, as shown
in Figure 5. In the graph-structured data, we regard a road segment as a node and a connection as
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an undirectional edge. There are 1570 nodes and 2803 edges in total, and the adjacency matrix is
a symmetric binary matrix. In both prediction tasks, we assume the model has "full information"
and can access accurate segment speed and point speed at all locations. In future research, this
assumption can be relaxed to approach real-world conditions with only partial spatial coverage.

Implementation Details

To provide a reasonable baseline model, we keep the implementation of HiMSNet as concise as
possible. The loop detector and drone modalities have separate temporal encoders He, they are
implemented with 3-layer LSTMs with hidden size 64, whose last step output will be used as zp.
Additionally, the He for drone modality has 2 layers of 1D convolution with kernel size 3 and stride
3 to down-sample the time resolution. Both Hd and HI are 2-layer MLPs with hidden size 128 and
output dimension 10 for the 10 prediction steps. Contrary to modality-specific temporal encoders,
the decoder is shared as the features have been combined. The message encoding layer R1 is a 1
× 1 convolution layer that down-samples the channel dimension to 32, to alleviate computational
cost at the global level. Accordingly, the message decoding layer R2 is also a 1 × 1 convolution
layer that restores the channel dimension to 64. The GME module is implemented with 3 layers of
GCNConv Kipf & Welling (2016) followed by ReLU activation. In the end, HiMSNet has 0.45M
parameters, and the file size of the model is only 5.3 MB.

HiMSNet is trained for 30 epochs using Adam optimizer with learning rate 0.001, weight decay
1 × 10−4, β = (0.9, 0.999) and batch size 8. All implementations are based on PyTorch, and the
experiments are conducted on a single Nvidia RTX 2080 Ti GPU.

Performance Evaluation

Following the common practice in traffic forecasting literature Y. Li et al. (2018), the prediction
results are evaluated with three metrics: Mean Absolute Error (MAE), Root Mean Square Error
(RMSE) and Mean Absolute Percentage Error (MAPE). Their vector forms for a pair of prediction
(ŷ) and ground truth (y) are defined as follows:

MAE = 1
n

∑n
i |ŷi − yi|

RMSE =
√

1
n

∑n
i (ŷi − yi)2

MAPE = 1
n

∑n
i |(ŷi − yi)/yi|2

. (6)

When a road segment is blocked by upstream vehicles, its segment speed can be 0, which will cause
infinite MAPE. Therefore, in this work, we only evaluate MAPE when the speed value is greater
than 5 m/s, and we refer to this modified metric as MAPE*. These metrics are reported for 15
min and 30 min prediction windows, which correspond to time steps 5 and 10 in the dataset.

Figure 6 shows the progress of training loss (MAE) and testing MAE for the two tasks. Both of
training losses decrease rapidly in the first a few epochs, and then gradually converge to stable
values. Similar trends can be observed for testing MAE, but the convergence is slower.
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Figure 6: The progress of training and testing MAE for segment speed prediction
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Table 1 compares the error metrics of HiMSNet with two trivial baselines, i.e., Input Average (IA)
and Last Observation (LO), on both segment speed and regional speed prediction tasks. IA simply
takes the per-location average over the input time window as its prediction, and this average can
be based on the input source of drone or loop detector. Similarly, LO uses the last observed value
for each location as its prediction. All the trivial methods have very large prediction errors, and
a common pattern is that they have almost the same prediction errors for 15-min and 30-min
prediction windows. This suggests the prediction task cannot be trivially handled, even with the
"full information" assumption.

In the experiments for HiMSNet, "/ld" and "/drone" indicate the model is trained without loop
detector data and drone data respectively, and the model without suffix is trained with both
modalities. Compared to the trivial predictions, all the HiMSNet variants have significantly lower
errors for both tasks, which demonstrates their effectiveness. The model with both modalities has
the best performance for road segment prediction, and HiMSNet/ld is best for regional prediction,
although they have very close error metrics. However, removing the drone modality will cause a
more obvious performance drop, which suggests the drone modality is more important in these
prediction tasks. Predicting the speed of individual road segments can be much more challenging
than predicting the aggregated states of a region, as the former requires fine-grained information.
HiMSNet has already reached 4.29% MAPE* for 30 min regional speed prediction, which is a very
promising result, but the MAPE* for road segment prediction is a higher value 17.29%. Since
the spatial coverage of drones can be larger than loop detectors in reality, we expect the drone
modality to have a more important role in future research when the "full information" assumption
is relaxed.

Table 1: Error metrics for road segment and regional speed prediction, best result in bold

Task Model 15 min 30 min

MAE RMSE MAPE* MAE RMSE MAPE*

R
oa

d
Se

gm
en

t IA_ld 5.31 6.51 43.23% 5.32 6.53 42.13%
IA_drone 4.71 6.32 57.67% 4.77 6.37 57.99%
LO_ld 5.59 6.91 46.50% 5.59 6.93 45.33%
LO_drone 6.94 8.52 82.64% 6.94 8.54 82.18%
HiMSNet/ld 1.51 2.54 17.40% 1.65 2.75 18.48%
HiMSNet/drone 1.59 2.65 18.55% 1.72 2.84 19.48%
HiMSNet 1.51 2.53 17.29% 1.65 2.75 18.35%

R
eg

io
na

l

IA_ld 5.73 5.76 93.27% 5.85 5.95 92.41%
IA_drone 2.55 2.72 43.04% 2.52 2.75 43.66%
LO_ld 5.72 5.75 93.18% 5.73 5.75 93.18%
LO_drone 2.57 2.76 43.11% 2.54 2.79 43.52%
HiMSNet/ld 0.27 0.47 3.27% 0.49 0.99 4.31%
HiMSNet/drone 0.28 0.50 3.31% 0.50 1.02 4.33%
HiMSNet 0.27 0.48 3.27% 0.50 1.01 4.29%

Figure 7 illustrates the spatial distribution of the prediction MAE of HiMSNet on SimBarca test
set. Most of the road segments have low prediction MAE, but there are still a few places with
higher errors, which suggests the traffic states there are difficult to predict. From the perspective
of traffic management, these locations are probably worth close monitoring.
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Figure 7: Average test set MAE for different locations, coordinate format EPSG:32601

4 Conclusions

In conclusion, this paper proposes a novel dataset SimBarca for urban traffic prediction, and a
baseline model HiMSNet. SimBarca features multi-source input with simulated speed measure-
ments from drones and loop detectors, and the prediction tasks include road segment-level and
regional speed prediction. HiMSNet is a flexible architecture that can handle multiple input
modalities and can be easily adapted to different tasks. Our experiments show that HiMSNet
achieves promising results on the regional task, but the segment-level prediction is still very chal-
lenging and thus requires more exploration. We will make our codes and dataset available at
https://github.com/Weijiang-Xiong/netsanut, and hope our work can inspire future research
on multi-source urban traffic prediction.
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