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Short summary

Demand Responsive Transport (DRT) has been widely used to complement scheduled public trans-
port services in rural areas. The DRT’s routing policy is mostly characterized by user’s maximum
ride time constraints given a fixed level of demand. Several post-evaluations of failed DRT systems
show that users are very sensitive to their daily use experience, and the volatility in user experience
within the guaranteed service level (e.g., maximum waiting time, maximum detour time) could dis-
courage users from continuing to use the services. However, it is still unknown to what extent the
stochastic nature of the user’s demand impacts the user’s experienced variability on the level of
service. In this work, we investigate to what extent user’s day-to-day experience fluctuates due to
demand stochasticity in a meeting-point-based DRT system. In particular, how the detour factor,
a main system parameter used to bind the maximum ride time of users, impacts the volatility in
users’ experience. Our simulation experiments show that all users experience maximum volatility
in ride time regardless of their origin location, suggesting a more fitted system design parameter
is needed to reduce user’s experienced variability.
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1 Introduction

Demand Responsive Feeder Service (DRFS), a type of Demand Responsive Transit (DRT) offering
first- and last-mile passenger transport, is expected to encourage the shift from private cars to
mass transit by allowing door-to-door travel using mass transit systems Lee & Savelsbergh (2017).
However, users of shared on-demand services like DRFS are uniquely exposed to day-to-day spa-
tiotemporal variability, even if the aggregate demand level is constant. With mass transit services,
the user experience is not affected by fluctuations in exactly which specific individuals travel each
day as their routes and schedules are fixed regardless of users location. Similarly with private car
trips, if the overall level of demand and hence congestion is constant, there is little variability in
individual travel times. Unlike these two cases, DRT vehicles are re-routed according to the specific
individuals travelling, and this can induce significant variability in each user’s experience.
Figure 1 provides a simple illustration of this variability. Consider a meeting-point-based DRFS in
which customers are picked up at nearby street corners or "meeting points". The order in which
user A is picked up changes, as does his/her ride time from Day 1 to Day 2, depending on who
else is requesting the service: A, B, and C on Day 1, and A, B, and D on Day 2. Additionally, user
A’s walking time changes from Day 1 to Day 3 as he/she is assigned to different meeting points
based on the service requests: A, B, C on Day 1 and A, C, D on Day 3. User A may experience
significant variability in pick-up time, walk time and ride-time, despite being a regular traveller
and despite the total daily DRT demand being constant.
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Figure 1: Day-to-day variability in user experience with DRT

To prevent users from abandoning the service and hence ensure its sustainability, it is important
to provide a high and consistent level of service, but it is difficult to control the volatile user
experience due to day-to-day variability in demand and the absence of fixed schedule and route.
Although most shared on-demand services assume that setting their fleet size will guarantee a
certain level of service (e.g., maximum waiting time, maximum detour time), volatility in user
experience within this guaranteed service level could discourage users from continuing to use the
services (Beirigo et al. (2022); He & Ma (2022)). In terms of user experience volatility, exist-
ing literature often focuses on investigating users’ perceptions towards service volatility/reliability
(e.g.,Geržinič et al. (2023)), the impact of service volatility on mode choice (e.g.,Bansal et al.
(2019)), and pricing schemes considering service volatility (e.g., Li et al. (2022)). However, none
of the studies have investigated the range of volatility that users experience within a given DRT
service under demand stochasticity: whether the variability experienced has any spatiotemporal
structure, nor if any aspects of the operational routing algorithm(s) impact this volatility.

In addition to the demand side factors, the volatility of user’s experience is also affected by the
supply side (e.g., network structure, ride time constraints). Since it is infeasible to investigate the
full range of system scenarios and user experiences using real-world data, we resort to a simulation
approach. In a previous study we developed a meeting-point-based DRFS as a transit connector
service Ma et al. (2024). In that study, we assessed the impact of different system parameters
(i.e. meeting point separation distance, and fleet size) on different key performance indicators
(i.e. service rate, total kilometres travelled of the fleet, etc.). In this paper we consider how the
maximum ride time constraints, as quantified by a detour factor of user’s direct ride, affect the
user’s day-to-day experience. To the best of our knowledge, there are few studies on this research
issue. We adopt a simulation-based approach based on our previous study in DRFS. The main
contributions of this paper are to answer the following research questions:

1) To what extent does the user’s day-to-day experience fluctuate due to demand stochasticity in
a meeting-point-based DRFS system?
2) To what extent does the user’s maximum ride time constraint impact the volatility in user
experience under demand uncertainty?
3) Is the volatility of user’s ride-time proportional to the degree of stochasticity in demand?

The results could provide new insights into a better understanding of the impact of the maximum
ride time constraint on user’s ride experience and pave the way to enhance the reliability of the
DRT system operation policy design.
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2 Methodology

To investigate the above research questions, two experiments are designed and tested using a
simulation approach. First, we describe the DRFS system, then describe the test instances, scenario
design and experimental settings.

Meeting-point-based DRFS

In this study, we consider a DRFS which offers a feeder service to connect to a transit station.
The system is based on the "meeting-point" concept where customers are picked up from a set of
pre-defined meeting points, designed to be within a maximum acceptable walking distance from
any users’ origin. This kind of DRFS has been adopted in Luxembourg and other cities as a sus-
tainable solution to reduce personal car use in rural areas (Czioska et al. (2019), Ma et al. (2021)).
We use the same term DRFS for our meeting-point-based DRFS hereafter, which is characterized
as follows. For a given planning period and a service area, potential customers submit their ride
requests in advance, indicating their origin, the transit station where they wish to be dropped off,
and their desired arrival time at the transit station (the transit service departure they intend to
board). Given a set of requests, the operator communicates whether customers’ ride requests are
accepted and, if so, their pickup time and the suggested bus stop (pick-up point). Customers are
guaranteed to arrive at the transit station within a fixed buffer time (e.g., <= 10 minutes before
their desired transit service). Additionally, the maximum ride time for each customer is guaranteed
to be less than the direct travel time from their origin to the transit station, multiplied by the
detour factor (a constant parameter of the DRFS).

Figure 2: Area of DRFS within 15km radius of transit station and vehicle depot at the
centre.

The DRFS problem is formulated as a Mixed-Integer Linear Programming (MILP) problem, ex-
tending the dial-a-ride problem (DARP) (Cordeau & Laporte (2007)), but adopting the concept
of meeting points along with vehicle charging synchronization constraints (when the use of electric
vehicle is assumed). It should be noted that, in this short paper, gasoline operated fleet is assumed
to focus on the effects of demand stochasticity. Given a set of customer requests, the objective is
to optimize vehicle routes to meet these requests while considering the trade-off between system
costs and customer inconvenience. The objective function minimizes the weighted sum of the total
vehicle travel time, customers’ total walking time, total vehicle waiting time at transit stations
before the acceptable fixed buffer time. The reader is referred to Ma et al. (2024) for a more
detailed description.
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Simulation experiments

We consider a circular service area with a radius of 15 km (see Figure 1). There is one transit
station and one DRFS vehicle depot at the centre of the service area. The maximum walking
distance of a user is assumed to be 1 km. Therefore, to ensure every customer can access at least
one meeting point, a regular grid of meeting points is generated across the service area with 1.4
km separation distance (see Figure2). The maximum user waiting time at the station for transfer
is set as 10 minutes. The detour factor, used to determine the maximum in-vehicle time, is set at
1.5 times the direct in-vehicle time. The pick-up time (or service time) is constant at 30 seconds.
The fleet is homogeneous and conventional (e.g., diesel) vehicles. for the purposes of this paper
the fleet size is assumed to be large enough that no customer rejections occur. We assume there is
a fixed population of 300 first-mile users uniformly randomly located throughout the service area,
all wishing to take the same train departing from the station.

Two scenarios are designed with different levels of demand stochasticity:

1) Each day 150 users are randomly selected from the fixed total population of 300. Given these
requests, the DRFS solves the customer-to-meeting-point assignment and route optimization prob-
lems to minimize total system costs. The experience of each customer is saved to their individual
history. This is repeated for 20 days, after which we evaluate user’s individual experienced walking
time and in-vehicle riding time for the days they travelled.

2) The second scenario also has 150 users travelling each day for 20 days. However, we assume this
comprises 120 regular users who travel every day; these are selected at random from the popula-
tion. Additionally, 30 users are randomly selected each day (from the remaining 180 non-regular
users). This allows us to investigate the impact on user’s experience of more regular patronage com-
pared with the maximally random scenario where the entire customer base is re-sampled every day.

Since all 300 potential users are willing to take the same train from the same origin, variability in
user experience is attributed only to the mix of users who choose to take the service on a given day.

The simulation is run 20 times for each scenario, representing the user’s experience for the 20
’days’. From day to day, the set of users utilizing the service changes fully or partially depending
on the scenario, causing variability in user ride time and walking time to the meeting point. The
results of the simulation are analyzed to measure this variability in user ride time and walking time
to the meeting point and to investigate if there are any factors that are systematically influential.

3 Results

Scenario 1: The detour factor determines not only the maximum user ride time but also limits
the level of volatility in ride time.

Figure 3 shows the distribution of ride time and walk time for all 300 users over 20 days, during
which each individual user will have accrued their own history of travel experiences. For each
individual we draw a boxplot of their walk time (in orange) and ride time (in blue), plotted using
their direct distance to the transit station as their x-coordinate. In Scenario 1, 150 users are ran-
domly selected every day from the population of 300, hence each user travels on average 10 out
of 20 days. Note that the distribution of ride times is systematically bounded below by the direct
distance from the user’s origin to the transit station (black dashed line) and above by their maxi-
mum ride time experiences which are defined by the detour factor constraint (black dotted line).
Since the detour factor constraint is multiplicative, the two boundary lines diverge; increasing the
detour factor would result in the upper boundary line being even steeper.

Some ride time experienced boxplots extend beyond the two boundary lines. Note that the bound-
ary lines are computed based on users locations, whereas customers walk to a meeting point and
travel from there. It is on the meeting point to transit station that the detour factor is applied
and this allows for some ride time experiences to breach the boundaries. On the other hand, no
systematic trend is observed in the distribution of walking time, which is represented by the orange
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box plots in Figure 3

Figure 3: The distribution of ride time (blue) and walking time (orange) for each user
against direct distance from their origin to the station

For each individual trip we can calculate the detour factor. The minimum detour factor will be 1,
when the customer is taken directly to the station which is the case if they are the last customer
to be picked up. The maximum will be 1.5 which is a constraint parameter of the simulation. Fig-
ure 4 illustrates the distribution of experienced detour factors for each user. As noted above, the
detour factor sometimes exceeds 1.5 (the maximum threshold) in both Figures 3 and 4, due to the
maximum ride time being based on the direct distance between the meeting point and the station,
while the maximum ride time or maximum detour factor shown in Figures 3 and 4 are estimated
based on the direct distance between the users’ origins and the station. A key observation from
Figure 4 is that users are experiencing maximum volatility in ride time at all locations throughout
the service area, regardless of their direct distance from the transit station.

Figure 4: The distribution of experienced ride time detour factor among 20 days plotted
against direct distance from the transit station

Scenario 2: Here we see the impact of having much less variability in demand: 80% of daily
travellers are the same individuals. We see that having 80% regular customers does not markedly
decrease the level of volatility in ride time (see Figure 5). The upper part of Figure 5 shows the
distribution of ride time over 20 days for the regular users (presented in the form of a detour factor
as for Figure 4) while the bottom part illustrates the experienced detour factor for the random
users. In both figures, it is evident that both types of users experience maximum volatility, bounded
by the detour factor. It should be noted that the variance in ride time is shorter for users located
closer to the transit station. This is because the buffer provided by the detour factor (e.g., 1 km
if users’ origin is 2 km away from the station) is too small to accommodate picking up other users
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on the way to the station. Some users are always picked up last or travel as solo riders.

Figure 5: The distribution of ride time that user experienced among 20 days in the form
of detour for regular users (top) and the random users (bottom)

4 Conclusions

In this study, we provide an initial overview of our ongoing investigations, which utilize ensembles
of simulation experiments to understand the impact of stochastic demand on the volatility of
user experience of a meeting-point-based DRFS. This work focuses on how the maximum ride
time affects the volatility in users’ ride time and their walking time to meeting points. The
results suggest a systematic pattern that all users experience maximum volatility in ride time,
bounded by the maximum ride time constraints, regardless of their location. This is also the
case when 80% of users are regular customers who use the service from the same origin and have
the same expected arrival time at the station every day. We are currently conducting additional
simulation experiments across other dimensions (e.g., the number of meeting points) with more
Key Performance Indicators (KPIs) (e.g., waiting time at the station), to identify systematic trends
in the volatility of user experience.
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