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SHORT SUMMARY 

 
Multi-region Macroscopic Fundamental Diagram (MFD) traffic equilibrium models have been 

developed as a more easily calibratable, maintainable, and computationally efficient alternative 

to traditional link-network traffic assignment models with full disaggregate network representa-

tion. In this extended abstract, we discuss the framework of a new dynamic multi-region MFD 

stochastic user equilibrium model that can base regional path choice on region travel times actu-

ally experienced. The model produces continuous outputs, facilitating the development of a max-

imum likelihood estimation procedure for rigorous statistical estimation of behavioural parame-

ters of underlying regional path choice models. This estimation procedure is operationalised in a 

first-of-its-kind real-life large-scale multi-region MFD system, with underlying regions and di-

rectional superimposing motorway regions. An enormous dataset of GPS records is utilised to 

calibrate MFD functions and estimate models. Results provide empirical evidence supporting the 

hypothesis that regional path choices are more realistically based on experienced region travel 

times rather than instantaneous travel times. 
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1. INTRODUCTION 
 

Multi-region Macroscopic Fundamental Diagram (MFD) traffic equilibrium models have been 

developed as an aggregate way of modelling large-scale systems (e.g. national networks). There 

are several potential advantages of adopting such an aggregated approach over a traditional de-

tailed link-network traffic assignment model. Firstly, the aggregated model should be simpler to 

calibrate, as it requires data at a coarser grain. For example, the production/speed-accumulation 

MFD functions require aggregated data over a large area (region), whereas detailed models re-

quire link-level calibration, and data may not be available at such a level across the whole area 

modelled. The above also means the aggregated model should be simpler to maintain as circum-

stances change. Another advantage is that the aggregated model would be expected to be signifi-

cantly faster computationally than running the detailed link-network model. This is a particular 

advantage if many scenarios need to be run, or if the model is embedded as a sub-problem in an 

overall problem concerned with calibration (e.g. Mariotte et al, 2020), parameter estimation, or 

optimisation of a design. 
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Yildirimoglu & Geroliminis (2014) developed the first multi-region MFD traffic equilibrium 

model, where a Multinomial Logit (MNL) regional path choice model is adopted for traffic flow 

equilibration along with a stochastic network loading procedure to estimate time-dependent re-

gional trip lengths. Batista & Leclercq (2019) later developed a monte-carlo-simulation-based 

approach for the traffic equilibrium based on monte carlo simulations of trip length / MFD distri-

butions to account for variability in these attributes. Mariotte et al (2020) try two different ap-

proaches for determining the regional path choice: a Deterministic User Equilibrium (DUE) var-

iant, as well as optimising the regional path choices to fit MFD production-point data. Extending 

these works, Batista et al (2021) developed a heuristic approach for updating the traffic-dependent 

trip lengths / regional paths during the dynamic traffic assignment, while numerous methods have 

been proposed for dynamically modelling the transfer of traffic flow at region borders (e.g. Yild-

irimoglu & Geroliminis, 2014; Mariotte & Leclercq, 2019; Mariotte et al, 2020).  

 

There are two important gaps in the research into multi-region MFD traffic equilibrium model-

ling.  

 

The first gap regards the calibration of behavioural parameters of underlying regional path choice 

models within the traffic equilibrium. Several studies (e.g. Mariotte et al (2020)) have adopted a 

DUE approach for the traffic equilibrium, i.e. a model without behavioural parameters. The defi-

ciencies of DUE are, however, well-known; for example, its inability to account for any modelling 

/ driver knowledge uncertainties. Yildirimoglu & Geroliminis (2014) and Batista & Leclercq 

(2019) adopt Stochastic User Equilibrium (SUE) approaches with behavioural parameters for cal-

ibration. To be able to properly capture different travel behaviours or even scales of attributes 

(e.g. hours - minutes), these parameters need to be estimated according to observed behaviour. 

However, no such methods have been developed for achieving this.  

 

The second gap also regards regional path choice. An assumption that has been made by all ap-

proaches thus far, has been that the regional path choices at each departing time interval are based 

on the current/instantaneous region travel times at that interval. However, the traffic state will 

inevitably evolve during a driver’s journey, so that the traffic state actually experienced in later 

regions of the regional path may be considerably different from when the driver departed. It ap-

pears more realistic that regional path choice will be based on these experienced travel times, 

assuming driver knowledge. 

 

Motivated by these two gaps, in this extended abstract we develop a new dynamic multi-region 

MFD SUE modelling framework and apply it in a real-life large-scale case study. A key feature 

of the developed model is that regional path choice can be based on region travel times actually 

experienced. Moreover, the model produces continuous outputs, facilitating the development of 

a consistent maximum likelihood estimation procedure for rigorous statistical estimation of un-

derlying behavioural parameters. To estimate the model parameters consistent with the equilib-

rium, this means solving a bi-level maximum likelihood problem subject to equilibrium con-

straints.  

 

The extended abstract is structured as follows. In Section 2 we discuss the framework of the dy-

namic multi-region MFD SUE model. In Section 3 we detail the likelihood formulation and esti-

mation procedure. In Section 4 we estimate the developed model in a real-life large-scale case 

study of Zealand, Denmark. 
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2. THE DYNAMIC MULTI-REGION MACROSCOPIC FUNDAMENTAL DIA-

GRAM STOCHASTIC USER EQUILIBRIUM MODEL 
 

In this section, we discuss the overall framework of the dynamic multi-region MFD SUE model. 

 

We begin by detailing general multi-region MFD traffic modelling concepts. The study area is 

partitioned into a set of regions. The traffic conditions in each region are described by a speed-

MFD function that maps accumulation (number of vehicles in the region) to average speed of the 

vehicles in the region. As accumulation increases, average MFD speed decreases. There is a set 

𝑀 of both internal and external Origin-Destination (OD) movements, i.e. trips originating and 

destinating in the same region and trips originating in one region and destinating in another, re-

spectively. A regional path is defined as a sequence of regions traversed when travelling an OD 

movement. 𝑃𝑚 is the choice set of regional paths for OD movement 𝑚 ∈ 𝑀. The total runtime 

period of the system is split into an indexed set Ψ of discrete time-slices, each with duration 𝜀. 

The travel demands 𝑑𝑚
𝜏  for each regional OD movement 𝑚 ∈ 𝑀 departing at a given time-slice 

𝜏 ∈ Ψ, are obtained by aggregating travel demands from the underlying network ODs over the 

time-slice between the OD regions. The travel demand 𝑑𝑚
𝜏  for OD movement 𝑚 departing at 

time-slice 𝜏 is split among the available regional paths 𝑝 ∈ 𝑃𝑚 according to a regional path choice 

model, to give the regional path flows 𝑓𝑚,𝑝
𝜏 . For a given accumulation level and thereby average 

MFD speed in a region at a given moment in time, the travel time of a region when travelling a 

particular regional path at that moment in time, is obtained by dividing the (regional path and 

time-slice specific) region length by MFD speed. 

 

The traffic dynamics of the dynamic multi-region MFD SUE model are described by a traffic 

propagation model utilising features of a Space-Time-Diagram (STD). Due to the word con-

straints of this extended abstract, we briefly describe the model. The travel demand for each time-

slice is assumed to depart uniformly and continuously, and, throughout each time-slice, all drivers 

are assumed to be experiencing the same speed in a region. Vehicles departing at the beginning 

and end of each time-slice travelling each regional path are tracked from origin to destination on 

the STD, based on region travel times, see Fig. 1. Occupied STD areas of regional path flows are 

then used to calculate accumulation levels, which feedback to determine average vehicle speeds 

in a region during a time-slice (through the speed-MFD function), and thereby region travel times. 

The traffic propagation model is thus naturally expressed as a fixed-point problem in terms of 

region travel times.  
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Fig. 1. Example of space-time diagram. 

 

This traffic propagation model is then embedded within a dynamic multi-region MFD SUE model 

for equilibrating the regional path flows, given equilibrated region travel times from the traffic 

propagation model. There are two versions of the model.  

 

The Instantaneous Dynamic (ID) model bases regional path choice on region travel times at the 

time-slice of departure. ID multi-region MFD SUE conditions are established as follows: A de-

mand-feasible universal regional path flow vector 𝒇∗ of all regional path flows departing at all 

time-slices, is an ID multi-region MFD SUE solution iff:  

𝑓𝑚,𝑝
𝜏 = 𝑑𝑚

𝜏 𝑄𝑚,𝑝
𝜏 (𝒕∗(𝒇)), ∀𝑝 ∈ 𝑃𝑚, ∀𝑚 ∈ 𝑀,∀𝜏 ∈ Ψ, 

where 𝑄𝑚,𝑝
𝜏  is the choice probability of regional path 𝑝 ∈ 𝑃𝑚 at time-slice 𝜏 ∈ Ψ, determined 

according to the adopted choice model, given the vector of equilibrated region travel times 𝒕∗ 
(from the traffic propagation model), given the regional path flows 𝒇. Note that in general the 

travel cost of a region may depend on several variables, however we suppose here that only travel 

time is considered. 

 

The Experienced Dynamic (ED) model bases regional path choice on the average region travel 

times actually experienced by the flow at the time-slices of travel. ED multi-region MFD SUE 

conditions are established as follows: A demand-feasible universal regional path flow vector 𝒇∗ 
of all regional path flows departing at all time-slices, is an ED multi-region MFD SUE solution 

iff:  

𝑓𝑚,𝑝
𝜏 = 𝑑𝑚

𝜏 𝑄𝑚,𝑝
𝜏 (�̅�(𝒕∗(𝒇))) , ∀𝑝 ∈ 𝑃𝑚, ∀𝑚 ∈ 𝑀,∀𝜏 ∈ Ψ, 

where 𝑄𝑚,𝑝
𝜏  is the choice probability of regional path 𝑝 ∈ 𝑃𝑚 at time-slice 𝜏 ∈ Ψ, given the vector 

of experienced region travel times �̅�, given 𝒕∗, given 𝒇.  

 

The system is inherently full of feedbacks where everything is connected. For example, drivers 

make regional path decisions based on the region travel times (instantaneous or experienced), but 



 

5 

 

the traffic states (and thereby the region travel times) depend in turn on the regional path deci-

sions. Moreover, the traffic states experienced are not only dependent on their own regional path 

decisions, but also the regional path decisions of all drivers travelling all regional paths departing 

at all time-slices. Consequently, an iterative solution method is needed to identify the equilibrium, 

to iteratively feedback between a Traffic Propagation Stage and Regional Path Flow Updating 

Stage. Fig. 2 provides a schematic diagram illustrating the general solution method. 

 

 

Fig. 2. Schematic diagram illustrating general method for solving the dynamic 

multi-region MFD SUE model. 

 

3. LIKELIHOOD FORMULATION & ESTIMATION PROCEDURE 
 

Suppose that we have available a set of 𝑍 observed regional paths, collected through e.g. GPS 

units or smart phones. Suppose that details of the multi-region MFD system are known, e.g. the 

region partitioning, speed-MFD functions, OD movements, travel demands, regional path choice 

sets, and regional trip lengths are all known. Suppose that the observation data is contained in a 

vector 𝒚 of size 𝑍 where element 𝑧 of 𝒚 details the OD movement, regional path taken, and de-

parting time-slice of the observation. 

 

The Likelihood, 𝐿, for an observation data vector 𝒚 is: 

𝐿(𝝍|𝒚) =∏∏ ∏ (
𝑓𝑚,𝑝
𝜏,∗ (𝝍)

𝑑𝑚
𝜏 )

𝜙𝑚,𝑝
𝜏 (𝒚)

𝑝∈𝑃𝑚𝑚∈𝑀𝜏∈Ψ

, 

where 𝝍 is the vector of model parameters from the relevant underlying regional path choice 

model, 𝜙𝑚,𝑝
𝜏 (𝒚) is the number of observations that take regional path 𝑝 ∈ 𝑃𝑚 when departing 

during time-slice 𝜏, and 𝑓𝑚,𝑝
𝜏,∗ (𝝍) is the ID/ED multi-region MFD SUE regional path flow solution 

for regional path 𝑝 ∈ 𝑃𝑚 given 𝝍. The key feature of any SUE model is that at equilibrium the 

regional path choice probabilities and regional path flow proportions are equal. 
𝑓𝑚,𝑝
𝜏,∗ (𝝍)

𝑑𝑚
𝜏  thus gives 
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the equilibrated choice probability of regional path 𝑝 ∈ 𝑃𝑚 (of OD movement 𝑚) when departing 

during time-slice 𝜏. 

 

The Log-Likelihood function, 𝐿𝐿, to be maximised is: 

𝐿𝐿(𝝍|𝒚) = ln(∏∏ ∏ (
𝑓𝑚,𝑝
𝜏,∗ (𝝍)

𝑑𝑚
𝜏 )

𝜙𝑚,𝑝
𝜏 (𝒚)

𝑝∈𝑃𝑚𝑚∈𝑀𝜏∈Ψ

) = ∑ ∑ ∑ 𝜙𝑚,𝑝
𝜏 (𝒚) ln (

𝑓𝑚,𝑝
𝜏,∗ (𝝍)

𝑑𝑚
𝜏 )

𝑝∈𝑃𝑚𝑚∈𝑀𝜏∈Ψ

, 

where 𝑓𝑚,𝑝
𝜏,∗ (𝝍) is the ID/ED multi-region MFD SUE regional path flow solution for regional path 

𝑝 ∈ 𝑃𝑚 when departing at time-slice 𝜏 given the vector of model parameters 𝝍. 

 

Standard MLE procedures can be used to estimate the parameters of the ID and ED models for a 

given multi-region MFD setup. Using a standard iterative estimation procedure, model parameters 

can be found that maximise the Log-Likelihood function as formulated above for a given set of 

data. A key distinguishing feature though from standard MLE procedures is that for each param-

eter setting tested, ID/ED multi-region MFD SUE must be re-solved to update the regional path 

flows. This makes the estimates consistent with the equilibrium model.  

 

 

4. CASE STUDY 
 

The model is estimated in a real-life large-scale case study. A multi-region MFD system is cali-

brated for the large-scale area of Zealand, Denmark. There are both underlying urban and rural 

areas and a superimposing motorway network that is treated separately. The underlying regions , 

displayed in Fig. 3, were partitioned manually according to logic, local understanding, and trial-

and-error, similar to as done in Mariotte et al (2020). After this, the superimposed motorway 

regions were then partitioned according to the underlying region, i.e. using the region borders of 

the urban/rural regions to also partition the motorway regions. Moreover, in order to better capture 

homogeneous traffic conditions, the motorway regions were partitioned further by motorway 

name, direction, and upon intersection with other motorways, see a demonstration in Fig. 4. This 

all resulted in a total of 135 regions: 22 urban regions, 17 rural regions, and 96 motorway regions. 
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Fig. 3. Underlying region partitioning and overlaying motorway network of the 

real-life large-scale case study of Zealand, Denmark. 

 

Fig. 4. Demonstration of superimposed motorway region partitioning. 
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Speed-MFD functions were calibrated for each region using two datasets. The first consisted of 

an extensive set of link-map-matched GPS points of cars and the second of loop detector vehicle 

counts. Upon manual inspection of the data, exponential speed-MFD functions were calibrated 

for the urban/rural regions, and piecewise-exponential speed-MFD functions were calibrated for 

the motorway regions. Fig. 5A-B show examples of the former and latter, respectively. 

 

Fig. 5. Examples of calibrated speed-MFD functions. A: Exponential function for 

urban region in central Copenhagen. B: Piecewise-exponential function for motor-

way region. 

 

The travel demands for each regional OD movement were obtained by aggregating intra-zonal 

travel demands from an underlying network model. Fig. 6 displays the total travel demand at each 

hour of the day, showing the morning and evening peaks. Regional path choice sets and time-of-

day-dependent regional trip lengths were obtained by generating intra-zonal shortest path routes 

on the underlying network based on time-of-day-dependent congested link travel times. Fig. 7A 

displays the distribution of the generated regional path choice set sizes and Fig. 7B displays the 

distribution of the regional path lengths. 

 

 

Fig. 6. Total travel demand at each hour of the day. 
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Fig. 7. A: Distribution of the generated regional path choice set sizes. B: Distribu-

tion of the regional path lengths. 

 

Using the estimation procedure introduced in Section 3, the ID and ED models were estimated 

utilising a large dataset of 997,121 regional path observations, tracked by GPS. A MNL model 

was used to determine the regional path choices, which has a Logit scaling parameter 𝜃 that scales 

sensitivity to instantaneous or experienced region travel time. Table 1 displays the estimation 

results. As shown, the estimated 𝜃 parameters are similar between ID and ED, but the ED model 

provides a considerable improvement in Log-Likelihood. 

 

Model 𝜃 LL 

ID 0.2729 -2585785 

ED 0.2701 -2578786 

Table 1. Parameter estimates and Likelihood values for estimation of instantane-

ous and experienced dynamic multi-region MFD SUE models in real-life case 

study. 

From the calibrated ED model, Fig. 8 plots the average time it takes to travel from region 6 (Ros-

kilde) to region 11 (DTU) throughout the day. These travel times align with personal experiences 

from the authors. 

 

Fig. 8. Average travel time from region 6 to region 11 throughout the day, from 

calibrated ED model. 
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5. CONCLUSIONS 
 

This extended abstract has established the framework of a new dynamic multi-region MFD SUE 

model. Unlike existing approaches, the regional path choices can be based on region travel times 

actually experienced. The above features create a challenge for solving the model, but an iterative 

solution method is developed. Given the well-behaved continuity property of the model, a MLE 

procedure is proposed for estimating behavioural parameters of underlying regional path choice 

models. This estimation procedure was operationalised in a first-of-its-kind real-life large-scale 

multi-region MFD system to estimate the Logit scaling parameter of an MNL regional path choice 

model, within ID and ED multi-region MFD SUE. Results found ID and ED estimated similar 

parameter values, but that the ED model provided considerably better fit to the data, thus provid-

ing empirical evidence to support the hypothesis that drivers more realistically base their route 

choice decisions on experienced region travel times rather an instantaneous travel times. Future 

research includes estimating more complex regional path choice models and considering addi-

tional travel cost attributes. Moreover, accounting for capacities of the network, for example at 

region borders, such as done by Mariotte & Leclercq (2019), Mariotte et al (2020). And, making 

the regional trip lengths consistent with the equilibrium, such as done by Yildirimoglu & Geroli-

minis (2014), Batista et al (2021). 
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