
A Unified Framework for End-to-End Learning of User Equilibrium

Zhichen Liu1 and Yafeng Yin1

1Department of Civil and Environmental Engineering, University of Michigan, yafeng@umich.edu

Short summary

This paper establishes an end-to-end learning framework for constructing transportation network
equilibrium models. The proposed framework directly learns supply and demand components as
well as equilibrium states from multi-day traffic state observations. Specifically, it parametrizes
unknown model components with neural networks and embeds them in an implicit layer to enforce
user equilibrium conditions. By minimizing the differences between the predicted and observed
traffic states, parameters for supply and demand components are simultaneously estimated. For
efficient training, we design an auto-differentiation-based gradient descent algorithm that handles
link- and path-based user equilibrium constraints. The proposed framework is demonstrated using
synthesized data on Sioux Falls.
Keywords: Traffic network equilibrium, end-to-end learning, neural networks, and auto-differentiation

1 Introduction

The transportation network equilibrium analysis framework models the interaction between a road
network (i.e., supply) and travelers (i.e., demand) and estimates the traffic flow distribution across
the network at an equilibrium state. This equilibrium state, referred to as the Wardrop equilib-
rium or user equilibrium, is achieved when no travelers can benefit from unilaterally changing their
travel choices (Wardrop, 1952). The user equilibrium then provides a benchmark for designing and
comparing potential improvement plans, thereby supporting the planning and management of the
transportation network. A static network equilibrium model typically consists of three components
that require calibration using empirical data. They are link performance functions, which deter-
mine travel time based on link flow, demand functions, which specify the travel demand between
each origin-destination (OD) pair, and cost or utility functions, which encapsulate travelers’ travel
choice preferences. Initiated by Beckmann et al. (1956), this paradigm originally modeled route
choices in static, deterministic networks. Since then, it has evolved, now capturing other travel
choices such as mode choice, enhanced travel behaviors such as bounded rationality (Xu et al.,
2011; Ding et al., 2023), and traffic dynamics (Wang et al., 2018).

All these network equilibrium models have been constructed using a "bottom-up" assembly approach
where modelers individually pre-calibrate the aforementioned three model components and then
assemble them together. To construct an equilibrium model, modelers would start by adopting
a particular assumption or theory regarding how travelers make travel choices over a congestible
network, and then deduce the corresponding equilibrium conditions. These conditions will be
subsequently formulated as an equivalent mathematical program or variational inequality (VI)
(alternatively fixed-point or nonlinear complementarity problem) whose solutions prescribe the
equilibrium flow distribution.

The bottom-up assembly approach is justified when each model component can be properly deter-
mined and calibrated, which, unfortunately, is not the case. For one thing, it is very challenging
to properly specify and calibrate a link performance function because congestion does not persist
as a steady state in practice. The appropriate specification of a link performance function depends
on the underlying dynamics, which is often unobservable to modelers (Small & Chu, 2003). It is
also difficult to observe empirical OD demand and even more so to properly calibrate a demand
function due to the endogeneity problem (Zhang et al., 2017). Lastly, the travelers’ utilities and
travel choice preferences are also difficult to observe. Utility functions, chosen based on modelers’
judgments and beliefs, may not accurately reflect real-world travel behaviors (Xu et al., 2011; Chen
et al., 2016). Adopting different behavior models can lead to different equilibrium conditions and

1

formulations.

The fundamental limitation of the bottom-up assembly approach lies in the disconnection between
the specification and calibration of individual components and the ultimate goal of a network
equilibrium model: to prescribe an equilibrium flow distribution that matches empirical obser-
vations as closely as possible, even though real-world systems never truly reach equilibria and
observed flows are not in equilibrium states. To address the limitation, we recently delivered a
proof-of-concept for an "end-to-end" framework that directly learns route choice preferences and
equilibrium states from multi-day flow observations (Liu et al., 2023). This study aims to formally
establish an end-to-end framework for network equilibrium analysis. As illustrated in Figure 1,
the proposed framework approximates unknown supply and demand components with neural net-
works and then embeds them in an implicit layer that enforces user equilibrium conditions. During
forward propagation (indicated by solid arrows), the framework iteratively updates flow distribu-
tions via closed-form rules until reaching user equilibrium. During backpropagation (indicated by
dashed arrows), it compares the predicted and observed traffic states and adjusts parameters via
Auto-Differentiation (AD) to reduce prediction loss/error.

Figure 1: Illustration of the end-to-end framework. This framework combines diverse input
features, including traveler characteristics like income, road network attributes like free-flow
time, and contextual features like weather. Unknown supply and demand components are
integrated into an augmented cost function Fθ, which is parameterized by a neural network
with parameters θ.

2 Parametrized User Equilibrium as an Implicit Layer

We consider partial aggregate traffic measures, such as link flow and link time, at peak periods are
observable for a long period of time. Supposing a planning agency is interested in developing a
static network equilibrium model to analyze the network for peak periods, the end-to-end frame-
work learns the OD demands, travelers’ route choice preferences, and link performance functions
as well as user equilibrium states from multi-day observations.

Mathematically, consider a network G = (N ,A), where N and A are the set of nodes and links.
Let R denote the set of OD pairs. Each OD pair r ∈ R is connected by paths that form a finite
and nonempty feasible path set Pr and P represents the set of feasible paths for all OD pairs. Let
x[m] ∈ X be the input features observed on day (sample) m ∈ M. The norm ∥·∥ denotes Euclidean
norm unless otherwise indicated and superscript [m] associates sample-dependent variables with
the m-th sample. We focus on using fully connected layers due to their straightforward regulariza-
tion and analytical properties. Herein, the terms "neural networks" and "fully connected layers"
are used interchangeably.

The proposed framework approximates the three components in network equilibrium models with
neural networks. We now elaborate on the construction of each component, starting from the
supply side. The link performance function τθ outputs the link time t[m] ∈ T as a function of path

2

flow h[m] ∈ H and input features x[m] ∈ X , defined as:

τθ : H×X → T ,

where the input features include contextual features (e.g., weather) and road network attributes,
such as link capacity and free-flow time; the feasible region H ⊆ R

|P|
+ and T ⊆ R

|A|
+ requires path

flow and link time to be nonnegative.

On the demand side, travelers are free to switch paths to improve their utilities. Findings from
travel behavior research suggest that route choice behaviors are much more complicated than just
choosing the shortest or quickest path. We use the cost function πθ to describe the perceived path
cost given actual travel time. The cost function πθ outputs the (perceived) path cost c[m] ∈ C as
a continuous function of link time t[m] ∈ T and input features, defined as:

πθ : T × X → C,

where input features include traveler characteristics (e.g., income and trip purpose), route at-
tributes (e.g., number of left turns), and contextual features. The feasible set C ⊆ R

|P|
+ requires

path cost to be nonnegative. Here, the parameters of all components will be jointly learned and
collectively represented as θ ∈ Θ.

In addition to route choice, travelers have the freedom to choose whether to travel or not and
where to travel to improve their utility. We assume that the OD demands are upper-bounded by
maximum possible demands q ∈ R

|R|
+ and introduce the OD flow as e[m] = q − Γ⊤h[m] to denote

the number of trips not realized. Here, Γ ∈ R|P|×|R| represents the path-OD incidence matrix and
Γpr equals 1 if path p connects OD pair r and 0 otherwise. We use an inverse demand function
λθ to depict the OD cost u[m] ∈ U , which reflects the disutility associated with not traveling, as a
function of OD flow e[m] ∈ E and input features, namely,

λθ : E × X → U ,

where the feasible region of OD flow is E = {e ∈ R|R| : 0 ≤ e ≤ q} and U ⊆ R
|R|
+ is the feasible

region of OD cost.

Assuming rational travelers try to maximize their travel utilities, the user equilibrium with elastic
demand is formulated as the following parametrized VI, the solution to which is the equilibrium
path flow h∗[m] and OD flow e∗[m] for sample m:[

πθ(τθ(h
∗[m], x[m]), x[m])

λθ(e
∗[m], x[m])

]⊤ (
h− h∗[m]

e− e∗[m]

)
≥ 0, ∀h ∈ H, e ∈ E (1)

To simplify notation, we introduce the augmented flow as y = (h, e) and the augmented cost as
z = (c, u). By defining the augmented cost function as:

Fθ : Y × X → Z

where Fθ(y, x) = [π⊤
θ (τθ(h, x), x), λ

⊤
θ (e, x)]

⊤, the parametrized VI in Eq.(1) can be compactly
reformulated as:

⟨Fθ(y
∗[m], x[m]), y − y∗[m]⟩ ≥ 0, ∀y ∈ Y, (2)

where the feasible region of augmented flow is Y = {y ∈ R|P|+|R| : y ≥ 0,Γ
⊤
y = q} if we introduce

the augmented path-OD incidence matrix as Γ = [Γ⊤, I]⊤ ∈ R(|P|+|R|)×|R|. If modelers believe
the path cost is link-additive, Eq.(1) can also present link-based formulation. The parametrized
VI is thereby encapsulated as an implicit layer, which takes contextual features x[m] as input and
outputs the augmented equilibrium flow y∗[m] such that:

y∗[m] ∈ V I
(
Fθ(y, x

[m]),Y
)
.

3 End-to-End Learning Framework

We are now ready to discuss how to learn the neural network parameters and user equilibrium
flow from multi-day observations. Consider a training dataset S =

{(
x[m], ys[m]

)}
m∈M where

3

ys[m] is flow observations. Each sample (x[m], ys[m]) is assumed to be drawn independently from
an unknown fixed probability distribution P over X × Y. We consider a smooth loss function,
denoted as ℓ : Y ×Y → R+, to measure the distance between the predicted equilibrium flow y∗[m]

and corresponding observations. Additionally, modelers can add a regularization term r(θ) based
on their prior knowledge of the model’s structure. For instance, they can use r(θ) = ∥θ∥ when
expecting sparse parameters. The training process thereby solves the following MPEC:

min
θ

1

|M|

|M|∑
m=1

ℓ
(
y∗[m], ys[m]

)
+ r(θ)

s.t. y∗[m] ∈ V I
(
Fθ(y, x

[m]),Y
)
, ∀m ∈ M

(3)

The loss function ℓ is flexible to accommodate modelers’ needs and available data. It can include
partial aggregate traffic state observations like link flow and travel time, path choice probabilities
from trajectory data, and benchmark OD demands from planning agencies. The framework inte-
grates multi-source data into a single loss function and effectively reconciles inconsistencies among
different data sources.

For scalable computation, we employ an AD-based gradient descent algorithm to solve the MPEC
in Eq.(3). To highlight how the training process iteratively updates θ, we will omit input features
and denote the augmented cost function Fθ(y, x) as F (θ, y) for the remainder of this section and
represent the objective function as:

Φ(θ) := f(θ, y) := ℓ(y(θ), ys) + r(θ).

Assumption 1 The augmented cost function Fθ(y, x) is jointly continuous, µ-strongly monotone
and L-Lipshictz continuous in augmented flow y and the feasible region for parameters, augmented
flow, and input features are compact.

Under Assumption 1, the equilibrium state is unique and is a Lipschitzs continuous function of
parameter and input feature (Dafermos, 1988). Moreover, the solution to the parametrized VI in
Eq.(2) can be formulated as the fixed point of the projection operator, and the MPEC in Eq.(3)
becomes:

min
θ

Φ(θ) :=
1

|M|
∑

m∈M
f(θ, y∗[m](θ))

s.t. y∗[m](θ) = g
(
θ, y∗[m](θ)

)
, ∀m ∈ M

(4)

Later numerical examples demonstrate that our analysis remains insightful even when these as-
sumptions are not strictly met.

The training process involves k epochs, each requiring differentiation through the equilibrium flow.
To ensure well-posedness, we focus on the differentiable region of the projection operator thereby
keeping it within the differentiable programming region for convergence analysis, as stated in the
following assumption.

Assumption 2 The projection operator g(θ, y) is differentiable in θ and y.

A similar assumption has been adopted by Li et al. (2022). Addressing the non-differentiability at
the boundary of the feasibility set Y remains an open question.

In each training epoch, we handle two sub-problems: forward propagation, which finds an approx-
imate equilibrium flow via N iterations, and backpropagation, which uses AD to approximate the
gradient of the objective function with respect to the parameter and updates parameters. In the
following discussion on forward and backward propagation, variables with a subscript k refer to
the k-th epoch. Superscripts n and q denote the n-th forward and q-th backward iteration, respec-
tively. The dependency on sample m is omitted for simplicity.

4

Forward propagation

The forward propagation updates the augmented flow via N -step projection operation, namely,

ynk = g(θk, y
n−1
k), ∀n ∈ [N],

with step size α > 0. In practice, we can extend the projection operator to a general fixed-point
operator, denoted as G(θ, y) : Θ × Y → Y, such that y∗ = limn→∞ G(θ, yn). Then the general
forward propagation follows:

ynk := G(θk, y
n−1
k), ∀n ∈ [N]. (5)

Note that the end-to-end framework is designed for handling large training data and requires
batched operations. Instead of solving a single constrained VI, it solves a batch of VIs during
forward propagation. Therefore, we need to use closed-form fixed-point operators, which can be
encoded with computational graphs, to facilitate parallel computation in this step. For example,
in path-based formulations, Patwary et al. (2023) used the method of successive averaging (MSA)
while Li et al. (2022) used mirror descent. In link-based formulation, Liu et al. (2023) applied
the decoupled projection method with N > 1. We use mirror descent for path-based formulations
and the decoupled projection for link-based formulations, as these methods have demonstrated
efficiency in their respective contexts. An alternative approach to solving the fixed-point condition
is root-finding methods like Newton’s or Quasi-Newton’s methods. Such second-order methods can
be numerically unstable as demonstrated in our previous work (Liu et al., 2023) so we will limit
our discussion to first-order methods in this study.

Backward propagation

In forward propagation, we consider a practical setting where the parametrized VI is solved with
N steps and terminated before reaching perfect equilibrium. Consequently, in backpropagation,
we need to approximate the gradient of the objective function with respect to the parameter at a
non-equilibrium augmented flow, defined as:

Definition 1 (Approximate hypergradient) The approximate hypergradient at a non-equilibrium
augmented flow ȳ is defined as:

∇̂Φ(θ) := ∇θf(θ, ȳ) + ∇̂ȳ(θ)∇yf(θ, ȳ), (6)

where the approximate implicit gradient at a non-equilibrium augmented flow ȳ is defined as:

∇̂ȳ(θ) := ∇θg(θ, ȳ) (I −∇yg(θ, ȳ))
−1

. (7)

We consider two AD-based approximations to sidestep the computationally expensive matrix in-
version in Eq.(7).

Iterated differentiation (ITD) memorizes the trajectory of N -step forward iterations and di-
rectly backpropagates through the equilibrating trajectory. Recall that in the N -th forward iter-
ation, the augmented flow yNk depends on θk and yN−1

k , namely yNk = g(θk, y
N−1
k). By applying

the chain rule, the hypergradient is then approximated by:

∇̂Φ(θk) = ∇θf(θk, y
N
k) +

(N−1∑
j=0

∇θg(θk, y
j
k)

N−1∏
i=j+1

∇yg(θk, y
i
k)
)
∇yf(θk, y

N
k). (8)

Under Inexact implicit differentiation (IMD), we first define the auxiliary variable as:

ν∗k =
(
I −∇yg(θk, y

N
k)

)−1

∇yf(θk, y
N
k).

The approximate hypergradient under IMD follows:

∇̂Φ(θk) = ∇θf(θk, y
N
k (θk)) +∇θg(θk, y

N
k (θk))ν

Q
k . (9)

where the auxiliary variable can be recursively approximated using Q-step fixed-point iteration:

νqk = νq−1
k + γ

(
∇yf(θk, y

N
k)−

[
I −∇yg(θk, y

N
k)

]
νq−1
k

)
, ∀q ∈ [Q]

5

where step size γ > 0.

To sum up, by leveraging the hypergradient approximated by ITD or IMD, the parameter at epoch
k is updated with learning rate β > 0 as:

θk+1 = θk − β∇̂Φ(θk).

A warm-start strategy, which initializes y0k as the output of the previous training epoch, is adopted
to facilitate convergence.

4 Numerical Experiments

Sioux Falls network consists of 76 links, 28 nodes, and 528 OD pairs. We scale the default demand
in Stabler (2023) by a factor of three as the maximum possible OD demand q. The ground-truth
inverse demand function for OD pair r follows:

ur(er, x
[m]) = au · t0r · x[m] · exp

(
bu · xr · x[m] · er

)
(10)

where xr ∈ [−1, 1] represents a normalized OD-specific feature; x[m] ∈ [−1, 1] is a one-dimensional
sample-dependent contextual feature; t0r is the shortest free-flow time between OD pair r; au = 2
and bu = 4 are functional parameters. We use the standard BPR function as link performance
functions and assume travelers only consider travel time when selecting their paths.

In this example, we focus on learning the inverse demand function and assume both link perfor-
mance and cost functions are given. We consider that multi-day link flows are observable and the
loss function measures the mean square error (MSE) between predicted and observed link flow.
The framework is trained using the Adam optimizer over K = 500 epochs with early stopping
implemented if there is no improvement in the training MSE over 50 consecutive epochs. The
forward propagation uses mirror descent with N = 100 iterations, while backpropagation uses the
ITD method. We partition our data into training, validation, and test sets, containing 1,024, 256,
and 256 samples each. To ensure robust results, we run each experiment 10 times and report the
average and standard deviation of metrics.

We consider the following four scenarios and fine-tune the learning rate and step sizes via grid
search for each setting.

• Benchmark : Modelers use grid search to identify a fixed OD demand that best matches all
testing samples, which is 1.04 in this case.

• Functional : Modelers encode the functional form in Eq.(10) with computational graphs and
learns two parameters au and bu.

• Linear : Modelers encode the inverse demand function as a linear combination of xr, x[m],
and er.

• End-to-end : The neural network follows the "kernel strategy" from Liu et al. (2023) to
handle potential changes in the number of OD pairs during "what-if" analysis: its input
dimension depends on the number of input features, in this case, xr, x[m], and er, rather
than the number of ODs. It combines a linear part (as in the Linear model) and a nonlinear
part, comprising three layers with eight neurons for each middle layer.

Here Functional and Linear models follow the traditional "bottom-up" approach and preselect
the functional form before calibration. Specifically, the Functional model assumes modelers have
perfect information of the underlying functional form, while the Linear model considers the poten-
tial inaccuracies in the modelers’ understanding when defining this form. On the other hand, the
End-to-end model adopts an "end-to-end" modeling approach, and neural networks are regular-
ized to ensure monotonicity and Lipschitz continuity. Interested readers can refer to our previous
work for more details (Liu et al., 2023). We evaluate the framework performance with weighted
mean absolute percentage error (WMAPE) φv, which quantifies percentage errors in traffic state
predictions.

6

Table 1 presents the WMAPE under different settings. In Benchmark model, the link flow WMAPE
is remarkably high at 50.5%. This error drops to 0.8% when we encode the ground-truth func-
tional form in the framework and adjust au and bu. The non-zero error can be attributed to the
nonconvexity of MPEC, which can trap the training process at a local minimum. The End-to-end
model has no information about the functional form of the inverse demand function. By leveraging
the expressivity of neural networks, it achieves a WMAPE of 1.8% comparable to the Functional
model. By contrast, the Linear model, which follows a "bottom-up" modeling approach, makes a
wrong assumption about the functional form and only reduces flow WMAPE to 9.5%. This result
supports that the end-to-end framework can autonomously "discover" the equilibrium flow from
observations without requiring the knowledge of the model component’s functional form.

Model # Params Link flow Link time Demand
Benchmark 1 50.5 (0.02) 98.0 (0.01) 83.41 (0.06)
Functional 2 0.8 (0.02) 2.2 (0.1) 0.5 (0.01)
Linear 4 9.5 (0.31) 32.4 (2.5) 5.7 (0.24)
End-to-End 126 1.8 (0.29) 4.4 (0.9) 1.3 (0.2)

Table 1: WMAPEs across training settings. Average WMAPEs are shown as percentages
with the standard deviation in parentheses.

Next, we investigate the effects of forward iterations and backward methods on framework perfor-
mance. Figure 2 illustrates the MSE over 70 epochs for two different backward methods. AD-ITD
completes 70 epochs faster than IMD when N = 1, but takes longer as N increases to 50. This
increased computation time is attributed to that a larger N under AD-ITD requires more iterations
for both forward and backward propagation (see Figure 2a). By contrast, AD-IMD avoids differ-
entiating along the equilibrating trajectory and the computation time changes relatively mildly
when N varies (see Figure 2b). Moreover, increasing N from 1 to 50 reduces training MSE and
speeds up convergence regardless of backward methods.

(a) (b)

Figure 2: Training MSEs with different forward iterations under (a) ITD and (b) IMD for
70 epochs. Shaded areas in this and the following graphs indicate the standard deviation
unless stated otherwise.

Figure 3 shows that an iterative equilibrating process is important to ensure local convergence. As
shown in Figure 3a, the training process under AD-ITD stops prematurely with N = 1, resulting
in a high training MSE around 4 × 103. By contrast, AD-IMD uses extra information from the
implicit function theorem to correct AD and keeps reducing the training MSE with N = 1. Both
AD-ITD and AD-IMD manage to avoid getting stuck when N increases to 10 (see Figure 3b) and
AD-ITD outperforms AD-IMD in finding better local optima when N increases to 50 (see Figure
3c).

5 Conclusions

This study establishes an end-to-end network equilibrium model tha directly learns unknown com-
ponents and user equilibrium states from multi-day observations. To enhance training efficiency,
we leverage two AD-based gradient descent algorithms, AD-ITD and AD-IMD, which are capable

7

(a) (b) (c)

Figure 3: Training MSEs using different backward methods with (a) N = 1, (b) N = 10,
and (c) N = 50.

of handling both link- and path-based user equilibrium constraints. Our findings are validated
using synthesized data from Sioux Falls networks. Looking ahead, based on our established learn-
ing framework, we plan to investigate end-to-end optimization to prescribe potential improvement
strategies, such as modifying lane configurations, expanding capacity, and implementing congestion
pricing. How to tackle the discrete decision variables – such as the addition of new roads or lanes
– will be an area of focus in future studies.

Acknowledgements

The work described in this paper was partly supported by research grants from the USDOT Center
for Connected and Automated Transportation, and National Science Foundation CMMI- 2233057.).

References

Beckmann, M., McGuire, C. B., & Winsten, C. B. (1956). Studies in the economics of transporta-
tion (Tech. Rep.).

Chen, C., Ma, J., Susilo, Y., Liu, Y., & Wang, M. (2016). The promises of big data and small data
for travel behavior (aka human mobility) analysis. Transportation research part C: emerging
technologies, 68 , 285–299.

Dafermos, S. (1988). Sensitivity analysis in variational inequalities. Mathematics of Operations
Research, 13 (3), 421–434.

Ding, H., Yang, H., Xu, H., & Li, T. (2023). Status quo-dependent user equilibrium model with
adaptive value of time. Transportation Research Part B: Methodological , 170 , 77–90.

Li, J., Yu, J., Wang, Q., Liu, B., Wang, Z., & Nie, Y. M. (2022). Differentiable bilevel programming
for stackelberg congestion games. arXiv preprint arXiv:2209.07618 .

Liu, Z., Yin, Y., Bai, F., & Grimm, D. K. (2023). End-to-end learning of user equilibrium with
implicit neural networks. Transportation Research Part C: Emerging Technologies, 150 , 104085.

Patwary, A., Wang, S., & Lo, H. K. (2023). Iterative backpropagation method for efficient gradient
estimation in bilevel network equilibrium optimization problems. Transportation Science.

Small, K. A., & Chu, X. (2003). Hypercongestion. Journal of Transport Economics and Policy
(JTEP), 37 (3), 319–352.

Stabler, B. (2023). Transportationnetworks. https://github.com/bstabler/
TransportationNetworks.

Wang, Y., Szeto, W. Y., Han, K., & Friesz, T. L. (2018). Dynamic traffic assignment: A review of
the methodological advances for environmentally sustainable road transportation applications.
Transportation Research Part B: Methodological , 111 , 370–394.

8

https://github.com/bstabler/TransportationNetworks
https://github.com/bstabler/TransportationNetworks

Wardrop, J. G. (1952). Road paper. some theoretical aspects of road traffic research. Proceedings
of the institution of civil engineers, 1 (3), 325–362.

Xu, H., Lou, Y., Yin, Y., & Zhou, J. (2011). A prospect-based user equilibrium model with
endogenous reference points and its application in congestion pricing. Transportation Research
Part B: Methodological , 45 (2), 311–328.

Zhang, C., Osorio, C., & Flötteröd, G. (2017). Efficient calibration techniques for large-scale traffic
simulators. Transportation Research Part B: Methodological , 97 , 214–239.

9

	Introduction
	Parametrized User Equilibrium as an Implicit Layer
	End-to-End Learning Framework
	Forward propagation
	Backward propagation

	Numerical Experiments
	Conclusions

