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Short summary

Public transport transfer nodes represent challenging elements of a network when it comes to
predicting vehicle occupancies, due to the high number of boarding and alighting passengers and
the related uncertainties that are associated to these stops. For this reason, understanding the
passenger dynamics at these stops can give a contribute in enhancing public transport occupancy
predictions.
This work presents a methodology to model the passenger boardings at transfer stops, which
considers both the passengers that reach the stop on their own from the external (e.g., by foot
or bicycle) and passengers that reach the stop on board a public transport vehicle. The proposed
methodology is applied to a case study related to one of the major transfer stops of the city of
Zurich. Results could be used to improve boarding predictions and to enhance the understanding
of the passenger transfers at such stops.
Keywords: Public transport; Passenger boarding predictions; APC data.

1 Introduction

The crowding of public transport (PT) vehicles signi�cantly a�ects the attractiveness and the
quality perceived by the users, as well as the e�ciency of PT operations. In particular, high
crowding levels can cause reliability problems (Drabicki et al. (2022)) and represent a major source
of discomfort for the passengers, who have been found willing to choose less crowded trips even if
this implies longer travel times, and even to pay more for traveling in less crowded services (Shelat
et al. (2022)). Thus, a prior knowledge about PT crowding can help passengers in planning and
making their trip (contributing in particular to a decrease of high crowding levels, Drabicki et
al. (2021)), as well as the PT provider to better manage the available resources and to introduce
additional services when and if these are needed.
Past studies have predicted PT occupancy using di�erent data sources, like Smart Card data
(Zhang et al. (2017)), text from the Web and Social Networks (Pereira et al. (2015); Rodrigues et
al. (2017)) and, more recently, automatic vehicle location (AVL) and automatic passenger counting
(APC) data, which gained importance thanks to their potential in providing real-time information
(Jenelius (2020); Wood et al. (2023); Roncoli et al. (2023); Hoppe et al. (2023)). In addition,
di�erent methods have been tested and used, such as time series-based methods (Zhang et al.
(2017)), neural networks (Rodrigues et al. (2017)), tree-based algorithms (Ding et al. (2016)), and
regression (Jenelius (2020); Wood et al. (2023)).
That works mainly focused on predicting the occupancy for single lines, without considering the
e�ect of multiple lines in the network. We started addressing this topic in (Gallo, Sacco, & Corman
(2023)), which focused in particular on corridors served by multiple overlapping lines. In this paper,
we focus speci�cally on the transfer nodes (i.e., stops crossed by multiple lines, where passengers
can make transfers) of a network and on the e�ect other lines serving the node can have on a
given line. As a matter of fact, transfer nodes are usually the key elements and the most crowded
stops of a PT network; in real-time predictions, due to the related uncertainties associated to such
nodes (and thus to the resulting boardings), they often act as a barrier that make it di�cult to
predict the occupancy after them. Thus, understanding the passenger dynamics and transfers at
such nodes can increase the quality of the predictions made in all the PT network.
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In this paper we propose a passenger boarding model capable of explicitly considering the e�ect,
on the passenger boarding predictions, that other lines can have on a given one at transfer stops,
and we apply it on one of the major transfer nodes of the PT network of the Swiss city of Zurich.

2 Methods and data

Data input

The considered dataset is related to the period from 10/12/2017 to 09/12/2018 and the city
of Zurich, and includes four data types. First, the number of passengers getting on (board-
ings) and o� (alightings) a certain tram vehicle at a certain stop, day and time (collected by
on-board sensors, and available only in about 30% of the rolling stock). Second, the scheduled
and the real departure times at each stop of a trip (available on the Zurich Open Data website
https://data.stadt-zuerich.ch). Third, data related to the holidays in Zurich (collected from the
website feiertagskalender.ch). Last, the rainfall data (amount of rain accumulated during a 10-
minute measurement interval), which was collected from the website of the ETHZ Institute for
Atmospheric and Climate Science (https://iac.ethz.ch/the-institute/weather-stations.html).

Boardings model

The aim is to model the number of passengers who board a vehicle providing service s of a line l
at a PT transfer stop a. To this end, the general idea is that at such kind of PT stops, passenger
arrivals can be divided into two groups:

� passengers arriving at the stop from the `external' (e.g., by walking or cycling). For these
passengers, assuming a Poisson distribution, we consider an arrival rate λa

l (t);

� passengers arriving at the stop with PT (i.e., on board a PT vehicle), who will use the stop
as transfer between two lines. These passengers do not arrive at the stop randomly, but they
arrive at the time the vehicle they are on reaches the stop.

The following assumptions hold:

� the passenger arrival rate λa
l (t) and the number of transfer passengers p

a
l,v(t) is constant over

the time period t;

� passengers always manage to board the �rst vehicle that arrives (i.e., there are not denied
boardings) and are not in�uenced by the crowding of the vehicle itself.

Table 1: Summary of notation

Variable Description

Va set of lines whose path crosses stop a

λa
l (t) arrival rate, at stop a and in time period t, of passengers of line l

Ha
s,l headway of line l, at stop a, for the service s (i.e., time from the last departure

of a vehicle of line l)

tas,l arrival time, at stop a, of service s of line l

pal,v,d(t) number of passengers who transfer from line v (which is traveling towards

direction d) to line l at the stop a in the time period t

xas,l,v,d number of vehicles of line v and direction d arrived at stop a in the time interval

(tas−1,l = tas,l −Ha
s,l, t

a
s,l)
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Given the previous considerations, we propose the following formula to estimate the number of
passengers boarding at stop a the PT vehicle providing service s on line l:

ONa
s,l = λa

l (t) ·Ha
s,l +

∑
v∈Va−l

∑
d∈{1,2}

pal,v,d(t) · xa
s,l,v,d. (1)

The �rst term of Equ. (1) represents the number of passengers, willing to board the vehicle,
who arrived from the external; this fraction is function of the real line headway Ha

s,l, as the more
service s is delayed, the more passengers have time to reach the stop. The second term of Equ.
(1) represents the fraction of passengers who reach stop a with a PT vehicle. More speci�cally, it
is the summation, over all the lines Va operating at stop a in the two possible directions of travel
1 and 2, of the times xa

s,l,v,d a vehicle of line v (in direction d) arrived at stop a after the last
departure of line l (i.e., in the time interval (tas−1,l = tas,l −Ha

s,l, t
a
s,l)) multiplied by the number of

passengers pal,v,d(t) willing to transfer, at stop a, from line v (traveling in direction d) to line l.

Equ. 1 can be written for each tuple
{
ONa

s,l, H
a
s,l, x

a
s,l,v,d, v ∈ Va, d ∈ {1, 2}

}
of observed values.

Thus, thanks to the assumption of constant arrival times and passenger transfers in a certain time
interval t (e.g., an hour) and stop a, the problem can be formalized as

Λ∗ = argmin (Y −XΛ)
2

(2)

where Λ := [λa
l (t) pal,v,d(t), v ∈ Va, d ∈ {1, 2}]T is the vector containing the arrival rates and

transfers of the passengers at the stop to be estimated, X is the matrix collecting all the observed
values of headways and line arrivals, and Y is the vector of the related observed boardings.

3 Results and discussion

Case study and descriptive analysis

We apply the methodology described in Sec. 2 to the PT network of the Swiss city of Zurich and,
in particular, to the stop of Zürich, Bucheggplatz (Fig. 1). This is one of the most important
transfer stops of the Zurich network, with many lines crossing it.

Figure 1: Scheme of the considered case study. The arrows indicate direction 1.

We select line 11 (North direction) as the line for which predicting the boardings: this line is
operated by trams and is one of the most crowded in Zurich. Lines 32, 69, 72 and 83 are operated
by buses or trolleybuses; since they cross the stop in two di�erent directions, we distinguish between
direction 1, which is the one indicated by the arrow (towards North-East), and direction 2, which
is the opposite one (towards South-West). Apart from line 69, these lines are characterized by long
trips crossing a large portion of the city. Line 15 is operated by trams, and is the only one that
share a portion of its path with line 11; we assume no transfer of passengers between line 15 and
line 11 at the stop of Zürich, Bucheggplatz because, due to the layout of the stop, passengers would
have to walk to transfer between the two lines, whereas they can easily transfer between them in
the previous stops, which are overlapped. Additionally, we assume that the other direction of line
11 does not interfere with the considered one, i.e., no passengers arrive with line 11 at the stop of
Zürich, Bucheggplatz from North, and return back immediately by taking line 11 in the opposite
direction (towards North). Consequently, we consider 9 independent variables: the real headway
of line 11 (Ha

s,11) and the number of arrivals (xa
s,11,v) of the other four lines considered, each of

them with the two possible directions. For simplicity, the stop and time indexes will be dropped
in the following notation.
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As a preliminary analysis, we evaluate the correlation between the independent variables of the
model in Equ. (1). Fig. 2 shows the resulting correlation coe�cients (computed with the Pearson
method); the color of each rectangle is proportional to the correlation level. Non signi�cant values
(p-value greater than 0.05) are not shown.

Figure 2: Correlation between the headway of line 11 and the number of arrivals of the

other lines.

We highlight a low positive correlation between the headway of line 11 and the number of arrivals
of the other lines, except for line 83. We can explain this by noting that the higher the headway
of line 11, the more time the other lines have to arrive at the stop. In addition, as shown in Fig.
3b, the considered PT network is highly regular. In particular, the third quartile of the delay
of all the arrivals at the addressed stop is 66s, with an average delay of 24s for the tram line
11 and an average delay of the other lines of 51s. Small delays can favor the above-mentioned
correlation since the PT lines are more likely to arrive at the stop always in the same time interval
(tas−1,l = tas,l −Ha

s,l, t
a
s,l). In addition, rare delays can favor correlation because, for instance, when

the predicted line is delayed, the other lines are likely not, and this results in having more arrivals
of other lines for an higher headway H11.

(a) (b)

Figure 3: Average passenger boardings, alightings and occupancy per hour (of a non rainy

working day) for the tram line 11 (a), and histogram of the delays of all the PT arrivals

(b) at the stop of Zürich, Bucheggplatz.

In addition, we observe (Fig. 3a) two daily peaks of demand, one in the morning (7.00-9.00) and
one in the evening (16.00-18.00), during which the average boardings have very similar values. For
this reason, we will restrict the following analyses to such intervals, and we will consider a constant
passenger arrival rate λ for each interval.
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Model and prediction results

We solved the problem in Equ. (2) for the two considered time intervals (morning peak and evening
peak). To eliminate the e�ect of the weather conditions (which can have an impact on the PT
usage, as shown in Gallo, Spanninger, & Corman (2023)) and of the day type, we focused on
the non rainy working days (from Monday to Friday, except for holidays). The resulting dataset
consists of 435 observations for the morning peak time and 433 for the evening peak time.
Tab. 2 shows the results, in terms of passenger arrival rate (pax/s) from the external (second
column), passenger transfers between one of the four considered lines and line 11 for each direction
of travel (third to tenth column), multiple R2 and global p-value (last two columns). Signi�cant
values (p-value < 0.05) are in bold.

Table 2: Model results
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7-9 0.039 1.7 2.8 4.5 2.8 -0.23 -1.2 2.1 1.2 0.92 9.6e-138

16-18 0.044 1.7 2.8 2.6 2.6 -3.8 0.5 0.19 3.0 0.93 4.8e-146

Considering the morning peak, all the variables related to the vehicles arriving at the stop from
North-East result to be not signi�cant (Tab. 2). Regarding lines 69, 72 and 83 (which arrive at the
stop of Zürich, Bucheggplatz from the stop of Zürich, Milchbuck), we can explain this by noting
that passengers coming from Zürich, Milchbuck do not have convenience in transferring from these
lines to line 11 at Zürich, Bucheggplatz, because they have other direct connections (not shown in
the �gure) from Zürich, Milchbuck towards North. Regarding line 32, we can explain its associated
low signi�cance by noting that it reaches Zürich, Bucheggplatz from North, so passengers are less
likely to continue their journey towards the same direction from which they came. In addition,
we observe that even line 69 from West is not signi�cant: we can explain this by noting that in
the morning line 69 is mainly used in the direction towards West, since it connects two major
transfer points of the network (Zürich, Milchbuck and Zürich, Bucheggplatz) with an hospital and
the university campus). Similar considerations can be done for the evening peak.
Focusing on the signi�cant values, according to the results we can see that the arrival rate of the
passengers from the external is slightly higher in the evening peak, where a passenger arrives, on
average, every 22.7s. Lines 32, 72, and 83 arriving from South-West are the most signi�cant, in
particular line 72 which, according to the model, takes 4.5 passengers (for each arrival) who transfer
to line 11. We can explain this by noting that these lines reach the stop of Zürich, Bucheggplatz
from opposite directions with respect to line 11, and after crossing large portions of the city.
The last step of this work is using the model in Equ. (1) for predicting the boardings at the
stop. In particular, we are interested in looking whether modeling the passenger transfers allows
to enhance the predictions made, with respect to modeling only the passenger arrivals at the
considered stop. To this end, we compare three prediction models, all based on Equ. (1), di�ering
in the independent variables used. The �rst model (only line headway) uses only the real headway
(H11) to predict the boardings. In other words, it assumes passengers arrive at the stop randomly,
without distinguishing between those who arrive from the external on their own (e.g., by walking
or by bicycle) and those who arrive on board another PT vehicle. In this model, λ11 represents the
arrival rate of all the passengers arriving at the stop (without considering how they arrived there).
The second model (signi�cant lines) uses both the real headway and the passenger transfers from
the lines that resulted signi�cant in the signi�cance test (see Tab. 2). The third model (all lines)
uses both the real headway and the passenger transfers from all the lines at the stop. In addition,
we consider as baseline model the average boardings in the considered time interval. Two thirds
of the dataset was used for training the model, and the remaining for testing.
Tab. 3 shows the results in terms of Root Mean Square Error (RMSE, pax).
Firstly, the three proposed models perform signi�cantly better than the baseline one. Secondly, the
best performance is achieved by the signi�cant lines model, whose RMSE is 5% lower than the one
of the only line headway model. We can then see that, in the considered case study, modeling both
passenger transfers and passenger arrivals slightly improve the quality of the predictions made.
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Table 3: Prediction results (RMSE)

Model 7.00-9.00 16.00-18.00

Average 14.0 11.6

Only line headway 11.9 8.0

Signi�cant lines 11.3 7.6

All lines 11.5 7.9

4 Conclusions

This work presents a methodology to model the passenger boardings at transfer stops, which
considers both the passengers who reach the stop on their own from the external (e.g., by foot
or bicycle) and passengers who reach the stop on board a public transport vehicle. The former
category of passengers is assumed to arrive at the stop randomly, whereas the latter one is assumed
to arrive at the same time of the vehicle they are on. Di�erently from the passenger arrival times,
the PT vehicle arrivals can be more easily predicted (Buchel & Corman (2022)).
The proposed methodology is then applied to the stop of Zürich, Bucheggplatz, which is a major
transfer stop of the PT network of the Swiss city of Zurich. Results from the predictions made
show an improvement in the RMSE of 5% in the case the passenger transfers are considered, with
respect to the case in which predictions are made by considering only random passenger arrivals.
Even if the correlation between the independent variables is low, it can partly explain the obtained
improvement. Therefore, in the future we plan to apply the proposed method in less regular
networks, where the e�ect of delayed arrivals could be more relevant. In addition, results could be
used to understand and predict the passenger transfers at the stops.
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