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Short summary

Activity-based models typically structure the scheduling of activities as several sequential choices,
e.g. number of activities, primary activity location and duration, secondary activities, etc. Conven-
tional models cannot consider these choices simultaneously - limiting realistic interactions between
them. Instead, we apply deep generative models for modelling activity sequence choices simulta-
neously, allowing full interaction between all dimensions.

We evaluate two different data and model structures. The first uses an image-like representation
of activity sequences, the second a text-like representation. We present results demonstrating the
practical considerations as well as quality of these models in application. We use a Variational
Auto-encoder architecture to provide realistic aggregate as well as dis-aggregate distributions.

Our approach provides an alternative to discrete choice and scheduling based approaches for some
applications. Our work also provides behavioural insight into the scheduling process.

Keywords: Activity-based modelling, statistical machine learning, deep generative models.

1 Introduction

The generation of realistic samples of synthetic activity sequences is a critical component of both
Activity-Based Models (ABMs) (Bowman & Ben-Akiva, 2001) and simulation-based transport ap-
proaches such as MATSim by W Axhausen et al. (2016), as well as in other domains such as
energy and epidemiology. Activity sequence modelling can be decomposed into (i) participation,
i.e. choosing from the available activities, and (ii) the order and timing of those activities, com-
monly called scheduling. Conventional models, such as ActivitySim by Galli et al. (2009), are
unable to model these dimensions simultaneously. Realistic interactions between these choices are
therefore limited.

In this paper, we test deep generative models for generating synthetic activity sequences. These
models have the potential to learn all real interactions within the scheduling process, by implicitly
modelling the different choice dimensions simultaneously. We aim for generated sequences to be
correct - where correct is defined as (i) being realistic at an individual level and (ii) being repre-
sentative in aggregate when repeatedly sampled. We define an evaluation framework to assess this
correctness. Our work demonstrates learning the distributions of sequences within a population,
without additional information, such as income or age distributions.

We share the results of experiments to assist the future development of these models. Our ex-
periments also allow consideration of the nature of activity sequence choice - whether activity
sequences are best structured as sequential or simultaneous processes.

We have created the open-source Python software CAVEAT (2023) for the development and eval-
uation of generative activity sequence models.

Activity Modelling

The planning of activity sequences for an individual can be thought of as a complex set of interacting
choices. These choices interact with each other, the choices of others, and with the environment.
The dominant approach to model activity sequences is with hierarchies of sequential choices, each
modelled using discrete choice models. These choices are then combined into coherent sequences
using bespoke rules or scheduling algorithms, such as by Manser et al. (2022).

1



In practice such activity-based models require numerous connected components. They require
measurement or estimation of costs for every possible alternative choice. They also require signifi-
cant simplifications of the choice sets. This simplification restricts their realism, and limits realistic
interaction between choices.

Pougala et al. (2023) show an alternative methodology that allows for multiple choice sets to be
combined into a single optimisation problem. Allowing simultaneous consideration of traditionally
separate choices. The approach samples the combined choices set to make the optimisation feasible.
This sampling is computationally expensive, and so does not scale well to millions of agents.

Deep Generative Models

Deep generative models have made headlines for the generation of realistic images and sequences of
text. We propose that the approach is also applicable for transport modelling - producing realistic
activity sequences - with sensible data and compute requirements.

Deep generative models have already seen some preliminary use in the transport domain - pri-
marily for generating synthetic population attributes (Borysov et al., 2019; Kim & Bansal, 2023).
There has also been application of deep generative models to more complex data structures; for
example by Choi et al. (2021), for vehicle trajectories. Koushik et al. (2023) generate activity
sequences conditional on agent attributes. They find aggregate realism challenging, particularly
the correct representation of infrequently observed activities. Their model generates sequences
conditionality on demographic attributes, therefore does not learn the underlying distribution of
activity sequences in their sample.

2 Methodology

We consider historic activity sequences sampled from a population, for example from a travel diary
survey. We aim to model new sequences, using this sample, that are representative of the whole
population.

For this paper we assume representativeness of the historic samples, and so require our model
to replicate the distribution of the sample. Future work will add conditionality to the model, so
that we can correct for bias in the sample, or use the model to generate samples for a different
population.

We use deep generative models for this task. The generative model is trained with the sampled
sequences, then is used to generate new sequences that can be used in travel demand models or
for simulation. This is classed as self-supervised machine learning.

Our models are based around the VAE architecture by Kingma & Welling (2013). During training
a VAE learns to map from a “latent space” with a known distribution (typically normal) to the
training data distribution. After training, novel sequences are generated by sampling the latent
space and applying the learnt mapping. See Figure 1 for an overview of VAEs.

In order to generate synthetic samples, the sample of historic schedules must first be represented
with an encoding that can be used by the generative models. We test two different encodings in
this paper - (i) image-like, where time is discretised into a fixed number of steps, like pixels in an
image, and (ii) text-like, where schedules are encoded as a sequence of activities with associated
durations.

Data

We use 2021 data extracted from the UK National Travel Survey (NTS) trip table as the sample of
historic sequences. We convert this trip data into daily activity sequences using Population Activity
Modeller (PAM) (2024). We additionally filter the sample of activity sequences to only include
those that start and end at a home activity. We do this so that we can create a simple evaluation
of the structural quality of synthesised plans. Figure 2 shows example activity sequences from
NTS.

This creates approximately 37,000 sequences composed of 137,000 activities. We refer to this data
as the observed sample of sequences. Output sequences are then called synthetic samples. Models
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Figure 1: Primer to Variational Auto-encoders

Figure 2: Example input activity-sequences

are trained on 80% of the observed data. We use the remaining 20% for validation during training.

For evaluation we generate new synthetic samples of the same size as the observed sample. As
this is a generative model, we do not provide a test data set. Instead, we define a framework to
evaluate the synthetic samples.

Evaluation

We evaluate synthetic samples of sequences. Where each sequence is a 24-hour chain of activities.
Evaluating the quality of outputs from generative models is application specific. We therefore
contribute a transport domain framework. Our framework evaluates both the sample correctness
(Table 1) and creativity (Table 2) of the models by comparing their outputs to the observed
data.

Correctness

We require output sequences to be individually realistic and our synthetic sample of sequences to be
representative in aggregate. We define this as correctness. Pougala et al. (2023) verify correctness
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Figure 3: UK NTS binned activity frequency

by visually interrogating sample sequences and by comparing the frequency of aggregate activity
participation by time-bin. Figure 3 shows activity frequency of the observed data. VALFRAM
by Drchal et al. (2016) provides a more detailed framework of metrics, focused on measuring the
difference between various participation and time distributions. We extend on these by refining
metrics and adding new distributions.

We evaluate correctness using the following themes; (i) structural, (ii) frequency, (iii) participa-
tion, (iv) transitions, and (v) timing. These themes are composed of distributions, such as activity
start times, activity durations, etc. Each distribution has descriptive and distance metrics for eval-
uation. Where distance is a measure of difference between synthetic and observed distributions.
Distributions are generally dis-aggregated, for example, start times of work versus start times of
shop activities.

We use enumerated activities to distinguish between re-occurrences of the same activity within a
sequence. For example, to distinguish between home at the start (home0 ) of day and home again
later in the day (home1 ).

We propose EMD (Wasserstein or Earth-Mover Distance) as a general purpose distance metric.
With the exception of activity frequencies and participation probabilities where we use MAPE
(mean absolute percentage error), clamped below 100%. MAPE highlights poor participation in
uncommon activities. In all cases low distances are better.

We average dis-aggregated features and themes as required to make high level evaluations. We
measure time-based metrics in days, such that a unit distance for a time feature is equivalent to a
missing activity participation or transition.

Creativity

Trivially, repeating schedules from the observed sample would have excellent correctness. However,
at large sample sizes, we would suffer from lumpiness, i.e. the repetition of sequences. It is desirable
for our model to be creative - to synthesise new sequences. We measure creativity as the ability
of the model to generate both unique sequences (which we call diversity) and novel sequences
(sequences unseen in the training data). We define homogeneity and conservatism as the opposite
of diversity and novelty, for use as distance metrics.

Discrete Sequence Model

The discrete model uses a discretised representation of time as per Figure 4. We use 10 minute
intervals, such that each sequence is composed of 144 steps. The representation can be usefully
considered as a one-dimensional image where each pixel represents participation for some fixed
time in some activity denoted by the pixel colour.

We use an embedding layer to turn the one-dimensional sequence into a two-dimensional vector
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Table 1: Correctness evaluation summary

Feature Dis-aggregation Descriptive metric Distance metric*
Structural
Starts & ends at home start/end probability EMD
Sequence duration none av. time (days) EMD
Sequence length none av. length EMD
Frequency
Binned participation activity probability MAPE
Activity Participation (probabilities)
Single participation prob. enumerated activity probability MAPE
Pair participation prob. activity pairs probability MAPE
Activity Participation (rates)
Single participation rate enumerated activity av. rate EMD
Pair participation rate activity pairs av. rate EMD
Activity Transitions
Bi-gram rate activity pairs av. rate EMD
Tri-gram rate activity triples av. rate EMD
Activity Timing
Start times enumerated activity av. time (days) EMD
End times enumerated activity av. time (days) EMD
Durations enumerated activity av. time (days) EMD
Start-duration (joint) activity av. time (days) EMD
∗EMD: Wasserstein Distance, MAPE: Mean Absolute Percentage Error

Table 2: Creativity evaluation summary

Feature Description Descriptive metric Distance metric

Diversity
The probability of a sequence
within the synthetic sample
being unique.

probability -

Homogeneity
The probability of a sequence
within the synthetic sample
not being unique.

- probability

Novelty
The probability of a sequence
not occurring in the observed
sample.

probability -

Conservatism
The probability of a sequence
occurring in the observed
sample.

- probability
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Figure 4: Discretised activity sequence representation

Figure 5: Discrete model VAE structure overview

representation. This is then followed by five layers of 2-dimensional convolutions (128 channels
each), followed by a fully connected layer, as per Figure 5. We use a latent layer with six
dimensions. The decoder mirrors the encoder, but uses a soft-max layer in place of embedding.
The full architecture is available in CAVEAT (2023). We use cross-entropy loss, weighted by
the inverse of activity total durations in the observed sample. This weighting is important for
promoting the generation of infrequent activities.

Sequence Model

The sequence model uses a sequence representation as per Figure 6. Activities are represented
with two dimensions - type and duration. Sequences are preceded by a special start-of-sequence
token and followed by end-of-sequence tokens up to a maximum sequence length of 14. This clips
a small number of sequences in our training data.

Figure 7 illustrates the structure of the sequence model. We use a custom embedding layer
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Figure 6: Sequence activity-sequence representation

Figure 7: Sequence model VAE overview

that embeds the first dimension (activity type encoding) of the input data into a two-dimensional
vector and then concatenates this back to the duration dimension. This is then passed through
two stacked recurrent neural network (RNN) layers, each with 256 channels. The hidden states
of the final RNN unit are then passed through a fully connected layer. We use Long Short-Term
Memory (LSTM) RNN units. We use a latent layer with six dimensions.
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The decoder uses a similar structure in reverse. The output from the latent layer is passed via
a fully connected layer into the hidden state of the first decoding RNN unit. This first unit is
always passed the start of sequence token, further steps then use the output from the previous
step. Outputs are passed through a soft-max for activity prediction and sigmoid activation for
duration prediction. This structure enforces a highly auto-regressive model, where each activity
and duration prediction is made conditional on the previous. The full architecture is available in
CAVEAT (2023)

We use a combination of cross-entropy loss for the activity prediction and mean squared error for
the duration prediction. Cross-entropy is weighted by the inverse of activity frequencies in the
observed sample. Training requires both teacher forcing (we use 50%) and masking of the useful
part of the input sequence for the loss function.

3 Results and discussion

Our models have stochasticity resulting from the training process and from sampling the latent
space. We therefore present all evaluation metrics as means and variances from batches of five.

Creativity

Model creativity is described in Table 3. The sequence model is more creative. Both models
generate more diversity than the observed sample and generate predominantly novel sequences.
But the sequence model generates all unique and all novel sequences. This is partially because of
the greater precision of the sequence data representation.

Table 3: Creativity

observed discrete model* sequence model* metric
mean variance mean variance

diversity 0.550 0.598 0.004 1.000 0.000 probability unique
novelty - 0.923 0.000 1.000 0.000 probability unseen

∗mean and variance of metrics from 5 runs of each model.

Correctness

Both models generate feasible sequences as shown by the examples in Figures 8 and 9. Table 4
summarises the full correctness evaluations of both models. The sequence model generally out-
performs the discrete model (lower distances to observed) but performance is often quite similar.
Variance is low, showing good model training stability.

Structure

The discrete data representation ensures correct sequence total duration. Structural descriptions
in Table 5 show that the sequence models do not generate correct sequence durations. We suggest

Table 4: Correctness evaluation themes summary

discrete model* sequence model* metric
mean variance mean variance

structure 0.268 0.000 0.075 0.001 EMD
frequency 0.126 0.003 0.039 0.000 MAPE
participation prob. 0.564 0.001 0.296 0.001 MAPE
participation rate 0.019 0.000 0.007 0.000 EMD
transitions 0.015 0.000 0.006 0.000 EMD
timing 0.059 0.000 0.037 0.000 EMD
∗mean and variance of correctness evaluation metrics from 5 runs of each model.
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Figure 8: Discrete model - example synthetic activity sequences

Figure 9: Sequence model - example synthetic activity sequences
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Table 5: Structural

observed metric discrete model* sequence model*
mean var. EMD** mean var. EMD**

av. total duration 1.000 days 1.000 0.000 0.000 0.995 0.000 0.025
first act home 1.000 prob. 1.000 0.000 0.000 1.000 0.000 0.000
last act home 1.000 prob. 1.000 0.000 0.000 0.996 0.000 0.004
av. seq. length 3.680 count 3.990 0.065 0.804 3.566 0.001 0.198
∗mean and variance of structural evaluation metric from 5 runs of each model.
∗∗mean EMD of structural evaluation distributions from 5 runs of each model.

Figure 10: Model activity frequencies

these discrepancies can be corrected in post-processing. The sequence model omits home as a final
activity around 0.4% of the time. The discrete model over-predicts the number of activities by 0.3
on average. The sequence model does better, under predicting the number of activities by 0.1 on
average.

Frequency

Figure 10 compares the activity frequency of the synthetic samples with the observed. This figure
can be thought of as describing the aggregate of what activities are taking place during the day.
The discrete model clearly under predicts work activity frequency but does a better job following
the detailed shape of the observed for all activities. The sequence model appears to smooth the
distributions.

Participation

Table 6 shows participation probabilities (the probability of each activity type occurring in a
sequence). The sequence model consistently outperforms the discrete model for both common and
uncommon activities. The discrete model almost entirely fails to generate the uncommon medical
activity. But over-generates, the also uncommon, visit and education activities. Suggesting that
this is not a simple class imbalance issue.

Transitions

Table 7 shows the average transition rates of the 20 most frequent bi-grams (transitions from one
activity to another). Compared to probabilities, using rates allows the consideration of multiple
occurrences within a single sequence. The sequence model clearly out-performs the discrete model.
The discrete model fails to generate some transitions, such as home → medical.

Figure 11 compares the frequencies of tour pattern types. Each row represents a distinct sequence,
such as home → work → home. The depth of the row represents it’s frequency within the sample.
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Table 6: Participation probabilities

observed discrete model* sequence model*
mean var. MAPE** mean var. MAPE**

home 1.000 1.000 0.000 0.000 1.000 0.000 0.000
other 0.394 0.373 0.004 0.130 0.384 0.001 0.055
work 0.237 0.127 0.002 0.723 0.261 0.000 0.086
shop 0.233 0.312 0.003 0.239 0.230 0.000 0.057
escort 0.140 0.208 0.002 0.313 0.156 0.000 0.110
visit 0.109 0.224 0.001 0.503 0.137 0.001 0.191
education 0.075 0.098 0.001 0.230 0.066 0.000 0.210
medical 0.037 0.000† 0.000 1.000 0.045 0.000 0.158
∗mean and variance of participation probability from 5 runs of model.
∗∗mean MAPE from 5 runs of model
†4 of the 5 discrete models fail to generate any medical activities.

Figure 11: Models activity sequence pattern comparison

The most common tours and the density of tour lengths are all reasonably consistent, especially
for the sequence model. The discrete model produces a large increase in completely home-based
tours (from 1% in the observed to around 10%).

Timing

Tables 8 and 9 show average start-times and durations for the 20 most frequent enumerated activ-
ities. Performance is mixed across both models with no clearly superior model. Figure 12 provides
a visual comparison of the distribution densities of activity start times and durations. We see that
the sequence model mostly fails to generate the bimodal escort activity distribution and performs
poorly at distributing the start times and durations of work and education activities. Suggest-
ing that the discrete model performs better at the timing theme. This is reflective of the better
distribution of activity frequencies in Figure 10.

Practicalities

We train all models until validation loss stabilises. We find that the models do not over-fit (either in
terms of the loss function or evaluation metrics) when trained for longer. With a modern computer
with GPU, the models presented take around ten minutes to train and can be sampled in negligible
time to create millions of sequences.

We provide CAVEAT (2023) to enable extensive model and hyper-parameter exploration. We
ultimately find both models perform similarly across a broad range of model structures, sizes and
hyper-parameters.

We find no obvious trade-offs in evaluation. Models are able to be optimised both in terms of
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Table 7: Bi-gram rates (transitions)

observed discrete model* sequence model*
mean var. EMD** mean var. EMD**

other → home 0.414 0.448 0.005 0.072 0.347 0.001 0.067
home → other 0.414 0.460 0.004 0.074 0.357 0.001 0.057
home → work 0.229 0.152 0.003 0.135 0.227 0.000 0.013
work → home 0.225 0.154 0.003 0.128 0.228 0.000 0.016
shop → home 0.224 0.339 0.009 0.116 0.201 0.001 0.034
home → shop 0.213 0.321 0.007 0.107 0.196 0.000 0.023
home → escort 0.178 0.279 0.005 0.115 0.133 0.001 0.060
escort → home 0.169 0.256 0.005 0.100 0.118 0.000 0.051
visit → home 0.103 0.184 0.000 0.082 0.115 0.001 0.025
home → visit 0.094 0.164 0.000 0.070 0.090 0.000 0.015
home → education 0.073 0.093 0.002 0.033 0.061 0.000 0.014
education → home 0.070 0.087 0.001 0.026 0.056 0.000 0.014
home → medical 0.035 0.000 0.000 0.035 0.041 0.000 0.007
medical → home 0.031 0.000 0.000 0.031 0.035 0.000 0.005
other → other 0.019 0.000 0.000 0.019 0.035 0.000 0.017
escort → escort 0.019 0.000 0.000 0.019 0.019 0.000 0.005
home → home 0.015 0.000 0.000 0.015 0.011 0.000 0.006
shop → shop 0.015 0.000 0.000 0.015 0.022 0.000 0.010
escort → work 0.011 0.005 0.000 0.007 0.017 0.000 0.008
other → shop 0.010 0.013 0.000 0.010 0.015 0.000 0.005
∗average rate mean and variance from 5 runs of each model.
∗∗mean EMD from 5 runs of model

Table 8: Average activity start times (days)

observed discrete model* sequence model*
mean var. EMD** mean var. EMD**

home0 0.000 0.000 0.000 0.000 0.000 0.000 0.000
home1 0.619 0.573 0.000 0.047 0.656 0.000 0.037
other0 0.532 0.535 0.000 0.014 0.526 0.000 0.017
work0 0.366 0.455 0.001 0.091 0.419 0.000 0.064
shop0 0.524 0.516 0.000 0.015 0.537 0.000 0.022
home2 0.700 0.689 0.000 0.019 0.749 0.002 0.051
escort0 0.484 0.502 0.000 0.023 0.525 0.001 0.048
visit0 0.552 0.537 0.000 0.023 0.559 0.000 0.016
education0 0.363 0.431 0.000 0.074 0.379 0.000 0.074
escort1 0.626 0.633 0.000 0.022 0.627 0.000 0.022
other1 0.637 0.625 0.000 0.020 0.614 0.000 0.027
home3 0.745 0.712 0.000 0.034 0.800 0.003 0.066
medical0 0.505 0.103 0.054 0.419 0.516 0.002 0.033
shop1 0.580 0.632 0.000 0.053 0.601 0.000 0.028
work1 0.557 0.530 0.000 0.037 0.576 0.000 0.024
escort2 0.631 0.677 0.000 0.054 0.644 0.000 0.026
other2 0.677 0.643 0.000 0.036 0.654 0.001 0.032
visit1 0.645 0.590 0.000 0.054 0.645 0.000 0.019
home4 0.776 0.727 0.000 0.049 0.340 0.218 0.503
escort3 0.669 0.698 0.001 0.047 0.646 0.001 0.043
∗average start time mean and variance from 5 runs of each model.
∗mean EMD from 5 runs of each model.
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Table 9: Activity durations (days)

observed discrete model* sequence model*
mean var. EMD mean var. EMD

home0 0.458 0.540 0.000 0.082 0.475 0.000 0.029
home1 0.307 0.290 0.000 0.022 0.302 0.000 0.014
other0 0.079 0.072 0.000 0.014 0.094 0.000 0.017
work0 0.339 0.106 0.001 0.233 0.282 0.000 0.068
shop0 0.051 0.045 0.000 0.009 0.062 0.000 0.014
home2 0.244 0.241 0.000 0.016 0.244 0.001 0.032
escort0 0.030 0.028 0.000 0.010 0.056 0.000 0.027
visit0 0.136 0.085 0.000 0.052 0.139 0.000 0.010
education0 0.293 0.152 0.000 0.141 0.280 0.001 0.081
escort1 0.020 0.029 0.000 0.009 0.053 0.000 0.033
other1 0.060 0.056 0.000 0.007 0.106 0.001 0.047
home3 0.215 0.221 0.000 0.014 0.201 0.007 0.064
medical0 0.053 0.001 0.000 0.052 0.061 0.000 0.020
shop1 0.040 0.037 0.000 0.008 0.067 0.001 0.028
work1 0.125 0.053 0.000 0.072 0.155 0.001 0.033
escort2 0.022 0.028 0.000 0.007 0.071 0.000 0.049
other2 0.046 0.049 0.000 0.007 0.102 0.001 0.056
visit1 0.087 0.058 0.000 0.029 0.128 0.001 0.042
home4 0.166 0.213 0.000 0.048 0.083 0.023 0.159
escort3 0.022 0.033 0.000 0.016 0.079 0.001 0.058
∗average duration mean and variance from 5 runs of each model.
∗mean EMD from 5 runs of each model.

Figure 12: Activity start-Time and duration joint distribution densities
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creativity and correctness.

Discussion - to discretise or not?

The discrete model breaks sequences into many parts, requiring many correct predictions to create
sensible activities and sequences. This is reflected in the weaker evaluation of participation and
transitions compared to the sequence model. But overall the discrete model performs reasonably
well. In particular it performs well at the timing of activities.

The sequence model structure encourages auto-regressive behaviour, in which activities and du-
rations are generated sequentially, with the previous activity and duration providing context. All
information from further in the past, the future, or about the time of day, must be held in the
hidden state of the RNN units.

Our intuition is that discretisation provides clear context of time of day at each inference. This
allows it to perform well at timing of activities that are structured around time of day (such as
escort), but not so well at activities that may be more influenced by preceding activities, such as
work. In comparison, the sequence model architecture has weaker context at inference about the
time of day, but excellent context at inference about the preceding activities.

Part of the success of the convolutional architecture is from being able to stack many layers,
allowing the model to maintain a direct relationship between relatively high and low-level structure.
This could be thought of a as truly simultaneous modelling. However this stacking comes at a
computational cost, which may be limiting if scaling up to longer durations or greater precision.

The sequence model performs particularly well at activity participation, with no obvious class
imbalance for uncommon activities. The model representation could be considered as a more
efficient encoding. It it is trivially more creative by allowing greater precision than the discretised
representation. However this comes at the cost of additional complexity, in particular an additional
hyper-parameter controlling the weighting of activity versus duration in the reconstruction loss.

4 Conclusions

We show that our VAE-based models are able to perform well at generating large synthetic pop-
ulations of activity sequences that are both realistic individually and representative in aggregate.
This is achieved without the help of population-attribute information, such as the distribution of
car-ownership or age.

We test two models, representing alternative ways of considering the process of activity sequencing.
The discrete model, uses an image-like approach, where time is invariant and choices are made
in a top-down manner. The sequence model, uses a text-like approach, where each activity is
of variable length and choices are made sequentially. We find the sequence model to be better
performing and expect it to scale well to larger problems. However, we find the discrete model
to be simpler to implement and also perform well, particularly at activity timing. We find the
models perform differently at different activity types, suggesting the decision making processes for
different activities varies.

Both models are able to generate millions of sequences in seconds. They have minor stochastics
and are not overly sensitive to parameterisation. This makes them a practical choice for activity
modelling.

Further Research

It is likely that better encoder/decoders are possible. We are particularly interested in the use of
different loss functions and model structures such as transformers. We have focused on the VAE
architecture, but other generative models may perform better. A flow-based model approach could
be considered to reduce model hyper-parameters.

For application, the current work is limited to where activity sequence distributions can be based
on observed data. This might be acceptable for modelling very near-future demand or for applica-
tions where sequence choices are assumed exogenous. Another application is for anonymisation of
activity sequence data.
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To make our work more applicable, we will look to incorporate conditionality to the VAE structure,
such that it can be used to infer a synthetic sequence given some variables, such as person or
location attributes. We also intend to increase the complexity of the activity sequences, extending
to multiple days, incorporating additional activity types, trips, and additional attributes such as
location or mode choice.
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