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SHORT SUMMARY 

This study proposes a flexible and interpretable discrete choice model (DCM) capturing key be-

havioural mechanisms simultaneously: (i) interactions between alternative-specific and individ-

ual-specific attributes (e.g., taste heterogeneity), (ii) interactions between alternative-specific at-

tributes, (iii) inherent non-linear utility of alternative-specific attributes (e.g., diminishing mar-

ginal utility of travel cost). Deep neural networks (DNNs) have been considered as candidates to 

flexibly capture these mechanisms, but they fail to provide trustworthy and explainable economic 

information (i.e., interpretability) obeying domain-specific knowledge (e.g., decrease in utility of 

travel mode due to an increase in its travel cost). We propose a DCM based on a lattice network 

(LN) that efficiently imposes attribute-specific monotonicity constraints in the utility specifica-

tion while ensuring the trustworthy interpretation of DNNs. The proposed LN-based DCM is 

benchmarked against DNN in a Monte Carlo study. The results show that it outperforms even the 

parametric DCM in terms of interpretability while slightly underperforming the DNN in terms of 

predictability. 

 

Keywords: discrete choice model; monotonicity; deep neural network; lattice network; 

interpretability. 

1. INTRODUCTION 

In discrete choice models (DCMs), correctly specifying the systematic utility is critical to achiev-

ing good predictability and interpretability. Interpretability indicates the extent to which it pro-

vides trustworthy and explainable economic information at an individual level. Ensuring the mon-

otonicity of the utility relative to a subset of alternative-specific attributes is crucial to maintain 

interpretability. For instance, the utility should monotonically decrease with the increase in cost 

in most situations.  

Traditional parametric DCMs rely on linear-in-parameter utility specifications, with 

hand-crafted interactions between attributes. Such models are appealing due to the ease of asso-

ciating the meaning with parameter estimates. However, misspecifications of parametric utility 

not only result in poor prediction accuracy, but also biased parameter estimates for interaction 

effects, leading to counterintuitive willingness to pay (WTP) estimates (e.g., negative WTP to 

save travel time). 

To address the issues of parametric DCMs, researchers have adopted deep neural net-

works (DNNs) (Cranenburgh et al., 2022). The DNNs improve the DCM’s predictability by con-

sidering complex non-linear and interaction effects of attributes, and WTP and elasticity estimates 

can also be extracted (Wang, Wang, et al., 2020). While ensuring monotonicity requirements is 

challenging in DCM-DNN, ignoring it might lead to counterintuitive interpretations in certain 

attribute domains (Wang, Wang, et al., 2020).  
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This study contributes with a theory-constrained DCM where the systematic utility is 

specified using a lattice network (DCM-LN henceforth). First, the lattice network (LN) segments 

the input space into grids or cells. The input attribute vector is transformed into a vector of inter-

polation weights (i.e., model parameters to be estimated) over the vertices of the cell that repre-

sents the input space. Second, the function value is obtained as a linear transformation of the first 

step’s interpolation weights (Gupta et al., 2016). While the linear transformation in the second 

step leads to easy-to-implement theoretical conditions for monotonicity, the transformation of the 

input attribute vector into the first step captures non-linear effects and interactions of attributes. 

We also add a calibration layer before and after the lattice network to improve the ability of DCM-

LN to capture non-linearities in attribute-specific effects, obviating the need to create a fine-

grained lattice that requires much more model parameters. DCM-LN can thus simultaneously 

infer underlying non-linear effects of all alternative- and individual-specific attributes and inter-

actions between them while achieving the monotonic effect of a subset of attributes for every 

individual.  

Figure 1 symbolically benchmarks the systematic utility of the DCM-LN against the tra-

ditional DCM with linear utility specification without interactions (DCM-linear) and DCM-DNN 

at a population and an individual level. Figure 1(a) shows that the overly complex DCM-DNN 

model represents abrupt changes in marginal utility and even incorrect signs. Such behavioural 

irrationalities are even worse at an individual level, as indicated by potentially higher heteroge-

neity (see Figure 1b). On the other hand, the overly simplified DCM-linear model causes serious 

bias in the marginal utility estimates. In contrast, the DCM-LN can recover true marginal utilities 

over the domain of input space at an individual level since the monotonicity constraints prevent 

the incorrect sign of the attribute effects at the individual level; thus, the population-level effect 

is naturally corrected. 



3 

 

  
Figure 1. Symbolic benchmarking of the proposed model against existing DCM models  
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2. METHODOLOGY 

Formulation  

The indirect utility for individual 𝑛 ∈ {1, … , 𝑁} for alternative 𝑜 ∈ {1, … , 𝑂} is a sum of system-

atic utility (𝑉𝑜𝑛) and error term (𝜀𝑜𝑛) as denoted in Equation (1), and the 𝑉𝑜𝑛 can be represented 

as a function 𝑿𝑜𝑛, with parameters 𝜽. 

 

𝑈𝑜𝑛 = 𝑉𝑜𝑛 + 𝜀𝑜𝑛 = 𝐹𝑜𝑛(𝑿𝑜𝑛; 𝜽)+ 𝜀𝑜𝑛 (1) 

 

where 𝑿𝑜𝑛 = (𝔁𝑜𝑛 , 𝔃𝑛) is a vector of input attributes, such that 𝔁𝑜𝑛 ∈ 𝑅𝑀−𝑄 is a vector of alter-

native-specific attributes and the 𝔃𝑛 ∈ 𝑅𝑄 is a vector of individual-specific attributes. If the 𝜀𝑜𝑛 

is assumed to be identically and independently Gumbel-distributed, the choice probability for the 

alternative o takes the form of the Softmax function as in Equation (2).   

 

𝑃𝑜𝑛 = 𝑒𝐹𝑜𝑛(𝑿𝑜𝑛;𝜽)

∑ 𝑒𝐹𝑗𝑛(𝑿𝑗𝑛;𝜽)𝑂
𝑗=1

⁄  (2) 

 

Based on the Softmax form of choice probability, the DCMs can be estimated by standard empir-

ical risk minimization as in Equation (3).  

 

𝜽∗ = 𝑎𝑟𝑔 min
𝜽

∑ ℒ(𝒚𝑛, 𝑷𝑜𝑛)
𝑁

𝑛=1
 (3) 

 

where ℒ is the standard cross-entropy loss function and 𝒚𝑛 is the choice made by individual 𝑛. 

The DCM-Linear assume the 𝐹𝑜𝑛 as a linear function 𝐹𝑜𝑛
𝐿𝑖 with 𝜽𝐿𝑖 that is a vector of coefficients 

for 𝑿𝑜𝑛. The 𝜽𝐿𝑖 directly relates to the main effects 𝜷 as in Equation (4).  

 

𝐹𝑜𝑛
𝐿𝑖(𝑿𝑜𝑛; 𝜽𝐿𝑖) = 𝜷𝑇𝑿𝑜𝑛 (4) 

 

The DNN represent the 𝐹𝑜𝑛
𝐷𝑁𝑁 by multiple neurons in the multiple hidden layers (𝒉) as in Equa-

tion (5).  

 

𝐹𝑜𝑛
𝐷𝑁𝑁(𝑿𝑜𝑛; 𝜽𝐷𝑁𝑁) = 𝑨𝒐𝒏

𝑻 (𝒉𝑯 ∘ … ∘ 𝒉𝟐 ∘ 𝒉𝟏)(𝑿𝑜𝑛) (5) 

 

where 𝐻 is the number of layers in the DNN, and 𝑨𝒐𝒏
𝑻  is the last layer before the Softmax function 

to make the alternative-specific utility. 𝜽𝐷𝑁𝑁 are the weights (i.e., parameters) connecting neu-

rons and hidden layers. 

Empirical studies have shown that 𝐹𝑜𝑛
𝐷𝑁𝑁 minimizes the empirical risk with overly com-

plex models (i.e., over-estimated interactions) (Wang, Mo, et al., 2020). To address this issue, this 

study proposes a flexible but constrained form of LN-based utility function as in Equation (6).  
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𝐹𝑜𝑛
𝐿𝑁(𝑿𝑜𝑛; 𝜽𝐿𝑁) = ∑ 𝒈𝒎(𝑿𝑜𝑛[𝑚])

𝑀

𝑚=1

+ ∑ 𝒓𝑚,𝑚′
1 (𝒈𝒎(𝑿𝑜𝑛[𝑚])

 

𝑚′≠𝑚
, 𝒈𝒎′(𝑿𝑜𝑛[𝑚′])) + ⋯ 

+ ∑ 𝒓𝑚,…,𝑚′
𝑀 (𝒈𝒎(𝑿𝑜𝑛[𝑚])

 

𝑚′≠𝑚
, … , 𝒈𝒎′(𝑿𝑜𝑛[𝑚′])) 

(6) 

 

where 𝒈𝒎 denotes an attribute-specific utility function that capture the inherent non-linear effect 

and 𝑿𝑜𝑛[𝑚] is m-th attribute of 𝑿𝑜𝑛. The 𝒓𝑚,𝑚′
1  indicates the first order interaction between the 

non-linear effects of 𝑚-th and 𝑚′-th attributes, and the 𝒓𝑚,…,𝑚′
𝑀  captures the 𝑀-th order interac-

tions. To ensure the trustworthy attribute-specific effect, we need to impose partial monotonicity 

constraints on 𝒈𝒎 and 𝒓𝑚,…,𝑚′
𝑀  at individual level. 

Lattice network  

The key requirement for trustworthy attribute-specific effect is the partial monotonicity of utility 

function relative to a subset of attributes. For example, increase in travel cost never increases the 

utility of travel mode if all other attributes are unchanged, regardless of the level of travel cost 

and the individual attributes. The monotonicity constraints can be implemented by restricting a 

sum of interaction effects , which requires considering several inequality constraints during train-

ing. The LN captures the attribute-specific non-linear effect as segmented effects for each cell 

(i.e., piecewise linear effect) in the lattice and the interactions of these non-linear effects using 

multilinear-interpolation. Such combination of piecewise linear functions and multi-linear inter-

polation enable LN to drastically reduce the number of inequality constraints to be evaluated for 

the monotonicity constraints (Gupta et al., 2016). Figure 2 shows the LN framework consisting 

of the calibrator layer and lattice layer.    

 

 

Figure 2. Lattice network framework 
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The input calibration layers 𝑪𝒊𝒏
  in Figure 2 implements the K attribute-specific transfor-

mation to capture the non-linear effect before the lattice layer, using one-dimensional monotonic 

piecewise linear function. These K transformation functions are estimated jointly with the lattice 

in the training. Figure 3 illustrates the examples of transformation function in the calibration 

layer. The only hyperparameter for k-th attribute in the calibration layer is the number of changing 

points 𝐶𝑃𝑘 if we set the equally distanced cells.  

 
Figure 3. Examples of attribute-wise non-linear transformation through the calibration layer. 

   

For the input attributes, 𝑿𝑜𝑛 ∈ 𝑅𝑀, we define the lattice size 𝑆𝑘 for each attribute dimen-

sion, which is the number of vertices along the k-th attribute dimension. Then, the lattice can be 

represented by 𝑆 = 𝑆1 × 𝑆2 × … × 𝑆𝐾 parameters and spans the (𝑆1 − 1) × (𝑆2 − 2) × … ×

(𝑆𝐾 − 1) hyper-rectangle. The lattice estimates the value of function 𝑳(𝑪𝒊𝒏
 (𝒙)) by S parameters 

that is the value of function at each vertex. The larger lattice size can represent more flexible 

utility function. However, even if the lattice size is two for an attribute, the non-linear effect can 

be captured by an input calibration layer before the lattice. 𝑪𝒐𝒖𝒕
 (𝑳(𝑪𝒊𝒏

 (𝒙𝒐𝒏)) in Figure 2 esti-

mates the 𝐹𝑜𝑛
𝐿𝑁(𝑿𝑜𝑛; 𝜽𝐿𝑁) in Equation (6), and 𝜽𝐿𝑁 consists of (i) the slopes of piecewise linear 

function in the attribute-specific calibration layers 𝜽𝑖𝑛𝐶𝑎𝑙
𝐿𝑁  (ii) 𝑆 parameters representing the value 

of function in the vertices 𝜽𝐿𝑎𝑡
𝐿𝑁 , and (iii) the slope of piecewise linear function in the output cali-

bration layer 𝜽𝑜𝑢𝑡𝐶𝑎𝑙
𝐿𝑁 .  

For the discrete choice datasets consisting of input attributes 𝑿𝑜𝑛 and output choices 

𝒚𝑛, the objective of the training LN is to estimate the 𝜽𝐿𝑎𝑡
𝐿𝑁  while ensuring the monotonicity con-

straints. For the k-th attributes (𝑥𝑜𝑛
𝑚 [k]), the increasing monotonicity is ensured if 𝜃𝐿𝑎𝑡,𝑠

𝐿𝑁  > 𝜃𝐿𝑎𝑡,𝑟
𝐿𝑁  

for all adjacent vertices s and r along the k-th attribute dimension. Similarly, the monotonicity 

constraints are also imposed on the attribute-specific input calibration layer. For the parameters 

of calibration layer for k-th monotonic attributes, 𝜃𝑖𝑛𝐶𝑎𝑙
𝐿𝑁 [𝑘] (i.e., the slopes of piecewise linear 

function in each segment), 𝜃𝑖𝑛𝐶𝑎𝑙,𝑢
𝐿𝑁 [𝑘] > 𝜃𝑖𝑛𝐶𝑎𝑙,𝑣

𝐿𝑁 [𝑘] should be maintained for all adjacent 𝑢 and 

𝑣, to make the 𝐶𝑖𝑛(𝑥𝑜𝑛
𝑚 ) be a piecewise monotonic linear function. With these two levels of ine-

quality constraints, the LN is estimated using a structural risk minimization. Then, the updated 

parameters are projected to ensure their monotonic constraints. The estimation of the 𝜽𝐿𝑁 is for-

mulated as in Equations (7-9). 
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𝐹𝑜𝑛
𝐿𝑁(𝑿𝑜𝑛; 𝜽𝐿𝑁) = 𝑪𝒐𝒖𝒕

 (𝑳(𝑪𝒊𝒏
 (𝒙𝒐𝒏; 𝜽𝑖𝑛𝐶𝑎𝑙

𝐿𝑁 ); 𝜽𝐿𝑎𝑡
𝐿𝑁 ); 𝜽𝑜𝑢𝑡𝐶𝑎𝑙

𝐿𝑁 ) (7) 

𝑃𝑜𝑛
𝐿𝑁 = 𝑒𝐹𝑜𝑛

𝐿𝑁(𝑿𝑜𝑛;𝜽𝐿𝑁)

∑ 𝑒𝐹𝑜𝑛
𝐿𝑁(𝑿𝑜𝑛;𝜽𝐿𝑁)𝑂

𝑜=1
⁄  (8) 

arg min
𝜽𝑳𝑵

∑ ℒ(𝑦𝑛, 𝑃𝑜𝑛
𝐿𝑁) + 𝑅(𝜽𝑖𝑛𝐶𝑎𝑙

𝐿𝑁 )
𝑁

𝑛=1
 

𝑠. 𝑡 𝑨𝜽𝐿𝑎𝑡
𝐿𝑁 ≤ 0, 𝑩𝜽𝑖𝑛𝐶𝑎𝑙

𝐿𝑁 ≤ 0, 𝑎𝑛𝑑 𝑪𝜽𝑜𝑢𝑡𝐶𝑎𝑙
𝐿𝑁 ≤ 0 

(9) 

 

𝑅(𝜽𝑛𝐶𝑎𝑙
𝐿𝑁 ) is the regularization for input calibration layers (i.e., the wrinkle and Hessian regular-

izer). The matrix 𝑨 is represents the inequality constraints for 𝑆(= 2𝐾) parameters, and partial 

monotonicity is considered through the matrix 𝑨. The matrix 𝑩 and 𝑪 play a similar role in im-

plementing the partial monotonicity constraints in the input and output calibration layers, respec-

tively. Details on the efficient optimization strategies for Equation (9) can be referred to Gupta 

et al. (2016).  

This study adopts the individual conditional expectation (ICE)(Goldstein et al., 2015) as 

post-analysis tools for DNN and LN to explain the attribute-specific effect (i.e., utility function) 

at individual level. Readers can refer to more details of ICE and its pros and cons in the Molnar 

(2018). 

3. RESULTS AND DISCUSSION 

Simulation study  

The data generating process (DGP) for binary choice (Han et al., 2022) are defined as follows. 

The three individual attributes – income (IN), full-time job (FUL), and flexible commuting (FLX) 

create systematic taste heterogeneity for the effects of two alternative-specific attributes – travel 

time (TT) and waiting time (WT). The IN is a categorical variable with 10 intervals, while the 

FUL and FLX are dummy variables. We also define the crowding (CR) and its interaction with 

TT, and inherent non-linear utility of TC. Equation (10) denotes the true systematic utility of 

individual 𝑛 for alternative 𝑗.  

 

  𝑉𝑛𝑗 = −0.1 − 𝟖 ∙ √𝑻𝑪𝒏𝒋 − 𝟐. 𝟎 × 𝑪𝑹𝒏𝒋 + 

(
−0.1 − 0.5 × 𝐼𝑁𝑛 − 0.1 × 𝐹𝑈𝐿𝑛 + 0.05 × 𝐹𝐿𝑋𝑛 − 𝟎. 𝟎𝟐 × 𝑪𝑹𝒏𝒋

−0.2 × 𝐼𝑁𝑛 × 𝐹𝑈𝐿𝑛 + 0.05 × 𝐼𝑁𝑛 × 𝐹𝐿𝑋𝑛 + 0.1 × 𝐹𝑈𝐿𝑛 × 𝐹𝐿𝑋𝑛
) × 𝑇𝑇𝑛𝑗 + 

(
−0.2 − 0.8 × 𝐼𝑁𝑛 − 0.3 × 𝐹𝑈𝐿𝑛 + 0.1 × 𝐹𝐿𝑋𝑛

−0.3 × 𝐼𝑁𝑛 × 𝐹𝑈𝐿𝑛 + 0.08 × 𝐼𝑁𝑛 × 𝐹𝐿𝑋𝑛 + 0.3 × 𝐹𝑈𝐿𝑛 × 𝐹𝐿𝑋𝑛
) × 𝑊𝑇𝑛𝑗 

 

(10) 

Benchmark models 

The DCM-DNN and DCM-Linear models are used as benchmark models. The DCM-Linear con-

siders the true first-order interactions between the alternative and individual attributes (e.g., 

𝐹𝐿𝑋𝑛 × 𝑇𝑇𝑛𝑗, 𝐹𝑈𝐿𝑛 × 𝑇𝑇𝑛𝑗) while ignoring second-order interactions (e.g., 𝐹𝑈𝐿𝑛 × 𝐹𝐿𝑋𝑛 ×

𝑇𝑇𝑛𝑗), interactions between alternative attributes (e.g., 𝑇𝑇𝑛𝑗 × 𝐶𝑅𝑛𝑗), and inherent non-linearity 

(e.g., 8√𝑇𝐶𝑛𝑗). For the DCM-DNN and DCM-LN, we do not provide any information for the 
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DGP and input all the alternative and individual attributes. The DCM-LN only uses the prior 

knowledge in which TT, WT, CR, and TC monotonically decrease the utility at individual level.  

Evaluation metrics for interpretability and predictability 

This study evaluates the interpretability by comparing the true and estimated WTP. We compare 

the true and estimated distribution of value-of-time (VOT) and value-of-waiting-time (VOWT) 

to evaluate the capability of capturing individual taste heterogeneity. We define 40 (=10×2×2) 

individual groups by IN, FUL, and FLX. For DCM-DNN and DCM-LN, VOT for each individual 

group is calculated by aggregating ICE along all levels of the attribute value and each individual 

group. We examine the distribution of estimated VOT and VOWT using five quantile values: 1%, 

25%, 50% (median), 75%, and 99%. Then, the accuracy of the estimated VOT and VOWT for 40 

individual groups is evaluated by the root mean squared error (RMSE) and mean absolute per-

centage error (MAPE). The predictability is evaluated by accuracy for binary choice. 

Evaluation results 

Table 1 summarizes the evaluation results for interpretability and predictability. All the estimates 

are obtained from 50 synthetic datasets, and their mean and standard deviations are calculated. 

We examine the VOT and VOWT distributions using five quantiles value. The evaluation results 

provide four interesting findings. First, the predictability of the DCM-Linear is significantly 

worse than the DCM-DNN and DCM-LN, and its interpretability is worse than the DCM-LN. 

These results clearly show how the misspecification of utility function dramatically reduces the 

predictive performance and the trustworthiness of behavioural interpretation. The main cause may 

be the large discrepancy between the linear and non-linear utility functions for TC, which dra-

matically impacts WTP estimates. Second, DCM-DNN shows the best predictability and the 

worst interpretability, indicating that the trade-off relationship still holds for more complex func-

tions. The interpretability of DCM-DNN is even lower than those of DCM-Linear. These results 

imply that the overly complex function fitted by DCM-DNN does not consider trustworthiness 

during training. Third, DCM-LN highly outperforms the DCM-Linear and DCM-DNN in terms 

of interpretability. It shows the best performance for all distribution and individual group values. 

In terms of predictive performance, DCM-LN highly outperforms the DCM-Linear but it is 

slightly outperformed by the DCM-DNN. Considering the balanced interpretability and predicta-

bility performance, the DCM-LN is the best model. Forth, both DCM-Linear and DCM-DNN 

estimate the negative VOT and VOWT for some individual groups, which substantially decreases 

the trustworthiness of the model’s interpretation. In comparison, the DCM-LN that ensures the 

individual-level monotonicity does not suffer such misidentification and provides slightly low but 

consistent WTP estimates.  

Table 1. Interpretability and predictability evaluation. 

Parameter 
True MNL DCM-DNN  DCM-LN  

Mean Std. Mean Std. Mean Std. Mean Std. 

Interpretability: 

recovery of  

distribution 

VOT (Median) 0.284 0.014 0.126 0.019 0.075 0.105 0.188 0.080 

VOT (1%) 0.142 0.010 -0.026 0.029 -0.012 0.281 0.093 0.063 

VOT (25%) 0.216 0.013 0.066 0.021 0.040 0.085 0.135 0.072 
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VOT (75%) 0.404 0.024 0.200 0.013 0.123 0.172 0.257 0.089 

VOT (99%) 0.675 0.027 0.372 0.024 0.222 0.214 0.456 0.105 

VOWT (Median) 0.480 0.019 0.258 0.148 0.146 0.210 0.322 0.134 

VOWT (1%) 0.252 0.011 -0.068 0.124 -0.114 0.797 0.153 0.082 

VOWT (25%) 0.372 0.017 0.118 0.141 0.086 0.159 0.244 0.127 

VOWT (75%) 0.779 0.033 0.414 0.175 0.233 0.273 0.472 0.181 

VOWT (99%) 1.236 0.049 0.719 0.288 0.402 0.560 0.892 0.263 

Interpretability: 

recovery of 

individual 

groups’ value 

VOT (MAPE)     0.630 0.044 0.802 0.329 0.351 0.103 

VOT (RMSE)     0.193 0.012 0.272 0.102 0.129 0.030 

VOWT (MAPE)     0.598 0.195 0.846 0.459 0.359 0.112 

VOWT (RMSE)     0.348 0.092 0.546 0.259 0.243 0.063 

Predictability: Training  

accuracy 
    0.552 0.006 0.775 0.010 0.741 0.018 

Test accuracy     0.546 0.013 0.716 0.014 0.697 0.016 

 

 Figures 4 and 5 support the findings derived from Table 1 and reveal some insightful 

patterns. First, all models underestimate the VOT and VOWT for most individual groups, ex-

cept for some peak points caused by misidentification of the interaction effects, but the extent of 

the underestimation of DCM-LN is smaller than the other models. Second, Figure 5 shows that 

DCM-LN approximates the non-linear effect much better than DCM-DNN at both population 

and individual levels. One major issue of DCM-DNN is that it provides almost zero or positive 

marginal utility of TC for some levels of TC, which may lead to unreasonably high VOT or 

VOWT estimates, as in the peak of red lines in Figure 4. In contrast, DCM-LN could prevent 

such misspecification using its monotonicity constraints, also representing relatively stable 

WTP patterns in Figure 4. Third, the estimated alternative-specific utility functions in DCM-

Linear are far from the true DGP. This result implies that there is a need to go beyond hand-

crafted utility specifications if predictability is of interest.  
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Figure 4. VOT and VOWT estimates for 40 individual groups in DGP. 
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Figure 5. Attribute-specific utility functions estimated by (a) DCM-Linear, (b) DCM-DNN, and 

(c) DCM-LN at the individual and (d) population-level distribution (PD) of all three models. 

4. CONCLUSIONS 

In summary, we customize the lattice networks and introduce their first application to the DCMs 

to achieve a flexible utility specification while maintaining interpretability by imposing theory-

driven constraints at an individual level. We benchmark the performance of DCM-LN against 

DCM-DNN and a parametric DCM (i.e., DCM-Linear) in a simulation study in terms of predic-

tive accuracy and recovery of underlying marginal utility and individual-level WTP values across 

input space.  

 The evaluation results show that the DCM-LN highly outperforms the DCM-Linear and 

DCM-DNN in terms of interpretability, which is measured by the capability to recover the true 

utility and WTP of the simulation dataset. In contrast, the predictability of DCM-Linear is only 

slightly outperformed by the DCM-DNN, indicating that its capability to capture the complex 
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interactions in DGP remains intact after imposing monotonicity constraints. This balanced per-

formance of DCM-LN is quite promising because it suggests that the DCM-LN approximates the 

true utility function during the training, rather than arbitrary functions that maximize the predict-

ability as DCM-DNN does.  

The work for evaluating the DCM-LN on real data is ongoing for further verification. 

Also, we are incorporating other behavioral mechanisms (i.e., soft constraints) into the DCM-LN, 

such as the non-compensatory decision rules (e.g., attribute cut-off and attribute non-attendance) 

and asymmetric marginal utility (e.g., prospect theory). 
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