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SHORT SUMMARY 

To reduce CO2 emissions and safeguard our energy security, we need to electrify our car-fleet, 

increase its efficiency, and limit car-dependence. This paper therefore answers the following 

research question: How and to what extent are features of residential neighborhoods and their 

residents currently related to energy relevant car type choice? For this purpose, it analyzes Dutch 

vehicles’ real-world energy consumption with a multilevel discrete choice model of fuel- and 

weight-preferences in one- and multicar households. Small, lower-income, female households in 

non-green (urban) environments tended to own light, efficient vehicles. Households with a private 

parking spot tended to own heavy, electric vehicles. Lastly, households with multiple cars tended 

to live in non-urban areas and to prefer heavier vehicles. These correlations imply that studies that 

omit vehicle energy efficiency underestimate the environmental impact of urban planning 

interventions. However, improving vehicle testing procedures may be a more effective energy-

saving strategy.  
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1. INTRODUCTION 

Vehicle gasoline consumption causes climate change and threatens energy security. Electric vehi-

cles can reduce emissions. Yet, these EVs come with energy security concerns of their own due to 

their rare mineral requirements (International Energy Agency, 2022). Moreover, they can cause a 

prohibitive increase in electricity use (Galvin, 2022). Especially heavy EVs consume a lot of elec-

tricity (Galvin, 2022; Weiss et al., 2020). It is thus important to limit the deployment of heavy, 

energy inefficient vehicles as well as of cars in general.  

 

A large body of earlier research has shown that a sustainable urban environment with high densities 

and limited distances to city centers can enable green-minded citizens to live a car-free life (Ban-

ister, 2011; Ewing and Cervero, 2010; Næss, 2012; Newman and Kenworthy, 1989; Silva et al., 

2017; Stevens, 2017). Other studies have shown that residents of dense urban areas are less likely 

to own large (inefficient) vehicle designs like vans, trucks, and SUVs (Bhat et al., 2009; Brown-

stone and Fang, 2014; Cao et al., 2006; Chen et al., 2021; Eluru et al., 2010; Garikapati et al., 2014; 

Li et al., 2015; Liu and Shen, 2011; McCarthy and Tay, 1998; Potoglou, 2008; Prieto and 

Caemmerer, 2013; Song et al., 2016).  
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Yet, most of these studies ignored efficient compact cars. Most also did not actually compute car 

energy efficiency whereas an SUV does not necessarily consume more energy than a sedan (Li et 

al., 2015; Timmons and Perumal, 2016). Moreover, no articles could be found that directly analyze 

the correlation between the built environment and car weight: the major determinant of both con-

ventional and electric vehicles’ energy efficiency. A clear link between the built environment and 

the (future) energy consumption of cars has thus not been established. 

 

The present paper will help fill this gap by answering the following research question: How and to 

what extent are features of residential neighborhoods and their residents currently related to energy 

relevant car type choice? For this purpose, it made use of real-world specific energy consumption 

data in megajoules per vehicle kilometer (MJ/vkm) of cars in the Netherlands. The energy-relevant 

car type choices were analyzed with a multilevel discrete choice modeling framework of fuel type 

and weight preferences in one- and multicar households. 

2. METHODOLOGY 

Travel, sociodemographic and built environment data 

Travel and sociodemographic data were obtained from the Netherlands Mobility Panel (MPN) 

from KiM Netherlands Institute for Transport Policy Analysis (Hoogendoorn-Lanser, 2019). This 

panel consists of multiple surveys and a three-day travel diary. Household members complete these 

on a predetermined moment in September, October, or November.  

 

This study analyzed data from households who participated in 2019, 2018, or 2017. Preference was 

given to the latest year available. The response rate is likely similar to the 64% in 2013 (Hoogen-

doorn-Lanser et al., 2015). In the end, 4316 households were included who together owned 3498 

cars of which the energy use could be accurately determined. All vehicles were analyzed. The 

sample weight was used to avoid overrepresentation of the multicar households. 

 

KiM provided us with the respondents’ residential addresses on the postcode-6 level (1234 AB, 

representing part of a street). Specifically, we used the postcode-6 addresses to couple the local 

address density and distances to stations and big (transfer) stations from Statistics Netherlands 

(CBS; Statistics Netherlands, 2018, 2019). Moreover, this data was analyzed with Geopy to com-

pute distances to city center proxies: destination-rich postcode-6 areas. We also included the NDVI 

green-space and land-use mix indexes from the Vitality Data Center (VDC) Project (Ren et al., 

2019; Wang, 2020; 202). A number of other built-environment and sociodemographic variables 

were included from the MPN-survey itself. The variables are described in Table 1.  

Car energy data 

The discrete choice model assessed the effect of the above-described variables on direct (consumer) 

energy. This can be easily converted to tailpipe CO2 emissions.  

 

The Netherlands Vehicle Authority (RDW) registers fuel use (Team Open Data RDW, 2021) based 

on the standardized New European Driving Cycle (NEDC). However, the Netherlands Organiza-

tion for Applied Scientific Research (TNO) has shown this data to be biased. The gap with the real-

world fuel use varies systematically with vehicle building year and can be expected to depend on 

other vehicle characteristics as well. It was therefore decided to instead use real-world data from 

fuel-cards from Travelcard Nederland BV. The data were scraped from Praktijkverbruik.nl and 

coupled based on the MPN vehicles’ fuel type, building year, and model.  
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Table 1: The explanatory variables included in the data analysis 

 
 

Travelcard data was available for 60% of the valid MPN vehicles. The energy used by remaining 

gasoline, diesel, and gasoline hybrid vehicles was instead computed using TNO-models calibrated 

with Travelcard-data (de Ruiter et al., 2021). These estimate emissions based on car weight, build-

ing year, and engine power. The precise energy efficiency of plug-in hybrid (PHEV) and battery 

electric (BEV) car-models was taken from TNO Travelcard-based research (van Gijlswijk et al., 

2020; de Ruiter et al., 2021).  

 

Non-electric cars with missing fuel type, building year, or weight data or with a registered weight 

under 500 kilograms were excluded from the analysis. 

Data processing 

Data cleaning and standardization was done using Pandas and Sklearn (pandas development team, 

2020; Wes McKinney, 2010; Pedregosa et al., 2011). Variables that were insignificant at the 20% 

level or that were insignificant at the 10% level for all car ownership classes, fuel types, and weight 

classes were excluded. The sample-weights were scaled to avoid in- or deflated P-values.  

The cars were lastly categorized into types based on fuel type and weight: the main determinants 

of energy consumption. The (hybrid) electric vehicles (HEVs) were given their own category 
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because of their importance for future energy consumption. Diesel vehicles were given their own 

fuel type class too since these efficient vehicles constitute a major fraction of the sample. The 

standard (mostly gasoline) and diesel cars were subdivided into the following weight categories: 

light (<1000 kg), midlight (1000-1250 kg), midheavy (1250-1500 kg), and heavy (>1500 kg).  

Car energy exploration 

The real-world energy consumption of the vehicles per car type category is shown in the boxplots 

of Figure 3. The BEVs are visible as a group of HEVs (green) consuming less than 1 MJ/vkm. 

Diesel vehicles (red) are also efficient, with the exception of heavy diesel vans. The old standard-

fueled cars (blue) consume around 3-4 MJ/vkm, but these often have a low sample-weight. As 

expected, heavy standard cars also use considerably more energy than their lighter counterparts. 

 

The energy consumption quantiles according to the NEDC test cycles are shown in gray for refer-

ence purposes. As expected, this official data consistently underestimates real-world energy con-

sumption. The gap seems somewhat larger for light vehicles.  

 

 

Figure 1: The real-world energy consumption of the eight car type categories fw  

The discrete choice model 

It was decided to analyze cars’ real-world specific energy consumption using a multilevel discrete 

choice modeling framework. Given that decisions on car ownership cannot be disentangled from 

household preferences for fuel- and weight-based car types fw, both choices were modeled jointly, 

taking the multilevel characteristics of the decision-making process into account: the number of 

vehicles available to households influences the types of vehicles being purchased. Both decisions 

are fundamental to understanding households’ travel energy use. Moreover, both decisions depend 

on the household’s sociodemographic characteristics and the built environment.  

 

At a first stage, car ownership classes were considered using a discrete choice model, whereby the 

utility 𝑈𝑐𝑛 of each of the three classes c (no car, one car, or two or more cars) for a household n 

was the sum of the utilities associated with the 𝑣 sociodemographic and built environment variables 

𝑥𝑖𝑛 as determined by the estimated coefficients 𝛽𝑖𝑐, the aspecific constant 𝐴𝑆𝐶𝑐 and the (EV1 iid) 

unobserved utility term 𝜀𝑐𝑛: 

 

𝑈𝑐𝑛 =  𝐴𝑆𝐶𝑐 +  ∑ 𝛽𝑖𝑐𝑥𝑖𝑛
𝑣
𝑖=1 +  𝜀𝑐𝑛                 (1) 

 

Then, a car type model was specified, which considered the number of cars owned as discrete latent 

attributes. This car type model estimated household choices for car fuel types f and weight 
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categories w explicitly by defining the utility of each of the eight fuel- and weight-based car types 

𝑈𝑓𝑤𝑛|𝑐 as the sum of the utility of the fuel type 𝑈𝑓𝑛|𝑐, the utility of the weight category 𝑈𝑤𝑛|𝑐, an 

aspecific constant 𝐴𝑆𝐶𝑓𝑤, and the (EV1 iid) unobserved utility term 𝜀𝑓𝑤𝑛. The utility of the fuel 

type and weight category were adjusted by a fixed amount 𝛽2𝑐𝑎𝑟 in households that were estimated 

to own two or more vehicles.  

 

𝑈𝑓𝑤𝑛|𝑐 =  𝐴𝑆𝐶𝑓𝑤 +  𝑈𝑓𝑛|𝑐 + 𝑈𝑤𝑛|𝑐 +  𝜀𝑓𝑤𝑛                                                                                           (2) 

𝑈𝑓𝑛|𝑐 =  ∑ 𝛽𝑖𝑓𝑥𝑖𝑛
𝑣
𝑖=1 +  𝛽2𝑐𝑎𝑟,𝑓                  (3) 

𝑈𝑤𝑛|𝑐 =  ∑ 𝛽𝑖𝑤𝑥𝑖𝑛
𝑣
𝑖=1 + 𝛽2𝑐𝑎𝑟,𝑤     (4) 

 

Attempted nested logit and mixed logit models collapsed into the multinomial model. It was thus 

decided to analyze car types using the above-explained Multinomial Logit specification. This al-

lowed us to use the independence of irrelevant alternatives property such that a household’s prob-

ability of choosing a light gasoline over a heavy gasoline vehicle was only determined by the 

weight coefficients 𝛽𝑖𝑤. These weight category coefficients should therefore remain valid in a fu-

ture sample with more electric vehicles. 

 

The joint model was estimated in Biogeme (Bierlaire, 2020) by maximizing the loglikelihood 𝐿𝐿 

function below. 𝑃𝑐𝑛 and 𝑃𝑓𝑤𝑛|𝑐 are the respective probability of belonging to the car ownership 

class and having a car of a certain fuel- and weight-based type as given by the well-known multi-

nomial logit equation. The dummy 𝑞 is 1 if the household owns a valid car and 0 otherwise. 

 

𝐿𝐿(𝛽𝑖𝑐 , 𝛽𝑖𝑓, 𝛽𝑖𝑤) = ln(∏ ∏ 𝑃𝑐𝑛(𝑐|𝑥𝑖; 𝛽𝑖𝑐 , 𝜀 )𝑐𝑛 ∏ ∏  [∑ 𝑃𝑓𝑤𝑛|𝑐(𝑓𝑤|𝑥𝑖 , 𝑐; 𝛽𝑖𝑓 , 𝛽𝑖𝑤 , 𝜀)𝑐 × 𝑃𝑐𝑛(𝑐|𝑥𝑖; 𝛽𝑖𝑐 , 𝜀 )]𝑞
𝑓𝑤𝑛  )        (5) 

3. RESULTS AND DISCUSSION  

The study results are provided in Table 2 and described below.  

 

As expected, large families with many employed individuals, a middle- to high-income, and a non-

urban residential location tended to possess a car. Households owning multiple cars were especially 

likely to have many adult and working members, a high income, and a low-density residential 

environment. They had a preference for heavy, non-diesel vehicles.  

 

Owning heavy rather than light vehicles was directly correlated with a large number of (older) 

family members, a higher household income, and a high fraction of males. Living in a green area 

and having a private parking spot increased (mid)heavy over light vehicle ownership as well, which 

is logical as compact cars are easier to park and maneuver in densely built areas. Yet, electric 

vehicles were also owned by households with a private parking spot. One explanation is that EV 

owners prefer to charge their vehicles at home (Westin et al., 2018).  

 

Interestingly, the local address density, street connectivity, and distances to public transport had no 

significant direct effect on vehicle fuel type or weight. Previously found effects of these variables 

on vehicle choice may be due to correlations with open (green) space and parking possibilities. 

Earlier studies may also have captured indirect effects of the built environment through ownership 

of two or more cars and associated heavy car preferences. 

 

The combined built environment effect was a noticeably higher vehicle energy consumption in 

non-urban areas. Building new residences in existing cities could therefore have a stronger effect 

on future energy consumption and CO2 emissions than indicated by earlier studies that did not take 

vehicle energy efficiency into account. 
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The capturing of this indirect effect was made possible by the multilevel discrete choice modeling 

framework. In addition, this design allowed analysis of households’ car fuel and weight preferences 

separately. This improved the model accuracy and increased its future relevance. The model was 

fed with built environment data from multiple sources on the fine-grained postcode-6 level. This 

helped achieve a high degree of accuracy and allowed testing of a wide variety of built environment 

variables. Moreover, the real-world car energy efficiency could be precisely determined by cou-

pling data from the Netherlands Vehicle Authority, TNO, and Travelcard BV.  

 

This also illuminated the large gap between vehicles’ real world energy consumption and the offi-

cial data based on the NEDC test. Further analysis showed this gap to be greater than the built 

environment effect on vehicle energy use. Potential consequences include undermining of CO2 -

emission standards, flawed estimates of (technologies’) emission reduction potentials, and the mis-

leading of consumers. It is therefore important that a new WLTP test-cycle has recently been in-

troduced, which should reduce - but not eliminate - the real-world gap (Ligterink et al., 2016). 

4. CONCLUSIONS 

This paper investigated how and to what extent features of residential neighborhoods and their 

residents are currently related to energy relevant car type choice by analyzing real-world energy 

use with a multilevel model of fuel- and weight-preferences in one- and multicar households. 

 

Small, female households with few older members, and a lower income in non-green (urban) en-

vironments were most likely to own light, efficient vehicles. Households with a private parking 

spot tended to own both heavy and electric vehicles. Small, lower-income, urban households were 

lastly less likely to own one or multiple cars, whereby the ownership of multiple cars was associ-

ated with the choice of heavier vehicles. 

 

The combined effect was a mild preference for efficient, low-energy vehicles in urban environ-

ments. Earlier studies that focused on vehicle kilometers thus underestimated the environmental 

impact of urban planning interventions. However, the easiest way to reduce vehicles’ energy con-

sumption and CO2 -emissions seems to further improve the testing procedures in order to tighten 

policies, stimulate innovation, and better inform consumers. 
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Table 2: The estimated coefficients for each of the utility functions. Variables with a 

P-value of 5% or less have been made bold. Coefficients give the change in utility 

when increasing the variable by 1 standard deviation (std).  
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