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SHORT SUMMARY 
Assessing to what extent new modes will change modal split is difficult, since revealed preference 
data is not available yet to estimate models. To address this, an unlabelled multimodal 
supernetwork is developed in which mode and route choice are simultaneously modelled. The 
model has been estimated based on data of existing modes and can be used to assess the impact 
of any new mode. We applied the model to analyse the effects of shared e-bicycles on one Origin-
Destination pair between Delft and Rotterdam. The main scientific contribution of this paper is 
that it successfully demonstrates how an unlabelled multimodal supernetwork can be used to 
analyse the effects of shared e-bicycles on the modal split between Delft and Rotterdam. The 
results show that the modal share of shared e-bicycles is 35.3-40.5% for unimodal trips and occur 
in 36.2-46.3% of multimodal trips, indicating that shared e-bicycles can significantly change the 
modal split. 
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1. INTRODUCTION 

Several mobility systems, ranging from shared electric bicycles to autonomous vehicles, have 
been developed. These new mobility systems could change the way our societies function in terms 
of sustainability, equity, accessibility, and safety (Fagnant & Kockelman, 2015; Milakis et al., 
2017; Shaheen et al., 2019). 
 
Researching how new modes affect mode choice is difficult since revealed data of the potential 
users using these new mobility systems are not available yet, so mode specific parameters cannot 
be estimated. In our previous research, this challenge has been addressed by developing an 
abstract, or unlabelled, mode modelling approach to assess the modal share of any new mode and 
unimodal trips (De Clercq et al., 2022). The unlabelled mode modelling approach was first 
introduced by Quandt & Baumal and describes a method to formulate a discrete choice model by 
describing the utility of each mode with the same mode attributes for each mode and by leaving 
out mode-specific constants and parameters (Quandt & Baumal, 1966). In our previous research 
(De Clercq et al., 2022), it was shown that any new mode can be modelled using the unlabelled 
mode modelling approach as long as the new mode can be described as a (new) combination of 
existing attributes of which the relative importance can be estimated based on revealed preference 
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data. In those cases, the utility function of the new mode can be defined and thus the new mode 
can be added as an option in the choice set of a discrete choice model. However, a shortfall of this 
approach is that it does not yet cover multimodal trips. 
 
New modes, such in our case shared electric bicycles, will be often used for the the first- and/or 
last-mile parts of a trip and will only available at certain locations (e.g., mobility hubs) (Van Eck 
et al., 2014). Therefore, to analyse new transport modes, it will be often necessary to analyse their 
use in a multimodal setting. This can be done by developing a multimodal supernetwork which 
can model multimodal trips without the need to predefine the combinations of mobility systems 
and where mode and route choice happens simultaneously (Liao, 2016; Van Eck et al., 2014; Vo 
et al., 2021). These models only need to know where people are allowed to switch modes (e.g., 
where the mobility hubs are located).  
 
In our study (De Clercq et al., 2023), we developed such a supernetwork approach to assess the 
impact of new mobility systems. Following the same logic as with the previously mentioned 
unlabelled discrete choice model (De Clercq et al., 2022), in our supernetwork, one can define 
the new mobility system by describing it in terms of a broad set of mode attributes but without 
any mode-specific constants, and add that mode as a new ‘layer’ in the supernetwork. So far, the 
model has only been applied to theoretical simple networks and a fictive multimodal version of 
the Sioux Falls network to demonstrate and verify the method. In this paper, we applied the model 
in a more realistic case situation. We focus on the introduction of shared electric bicycles on one 
example Origin-Destination (OD)-pair between Delft and Rotterdam because cycling is a 
dominant mode of transport in the Netherlands and electric bicycles are becoming increasingly 
popular (Sun et al., 2020). 
 
This paper contributes to the existing literature by demonstrating how an agent-based multimodal 
supernetwork-based traffic assignment model with unlabelled modes that takes into account mode 
and route choice simultaneously can be applied in a real use-case to gain insight into the influence 
of shared electric bicycles on a specific OD-pair between Delft and Rotterdam, including the use 
in the first and last-mile parts of a trip. Knowledge gaps and possible future research directions to 
research the effects of new modes on the modal split of urban areas are identified and discussed 
as well. 
 

2. METHODOLOGY 

Figure 1 summarizes the supernetwork approach that has been applied in this paper. Trip 
generation and distribution are considered exogenous. Mode and route choice are calculated 
simultaneously based on the resistance per edge. Subsequently, per timestep, trips are assigned to 
the supernetwork using a mesoscopic dynamic traffic assignment approach. The assignment 
model with the supernetwork is set up using Python 3.10.2 and the NetworkX package (Hagberg 
et al., 2008). Below, the main elements of the assignment model are described. For an extensive 
description of the network definition, the combined mode and route choice model and the network 
loading model, refer to (De Clercq et al., 2023). 
 
The supernetwork consists of one layer for each mode. Edges represent aggregated road segments 
with generalized resistance (i.e., disutility), transit segments (representing aggregated transit 
lines) and dummy transition edges from and to a neutral layer (representing transfer resistance). 
The transport mode edges have a length and a number of attributes (representing the mode and 
link attributes), where for modes using the road network the ‘time’ attribute can change with the 
use of the edge (i.e., the flow).  
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Figure 1: General layout of multimodal supernetwork (De Clercq et al., 2023) 

Twelve mode attribute assumptions (times mode attribute parameters, see Table 3) have been 
used to define the resistance in the edges for all modes: Initial cost (€); Cost/trip (€); Time (min); 
Driving task (-); Skills (-) (i.e., driver’s license); Weather protection (-); Luggage (-); Shared (-); 
Availability (-); Reservation (-); Active (-); Accessible (-). The mode attribute assumptions per 
mode are shown in Table 1.  

Table 1: Mode attribute assumptions 
Mode attribute Addable* Source and determination 
Initial cost (€) Yes Car, transit, cycle, walk = 0 
Cost/trip (€) Yes Car = €0.19 per km; transit = 0.20 per km; walk = 0; 

bicycle = €100 purchase costs, with 4 trips per day for 5 
years 

Time (min) Yes Car, transit, bicycle and walk from Google Maps (Travel 
times Google Maps, n.d.) 

Driving task (-) No Car, bicycle = 1; transit, walk = 0 
Skills (-) (i.e., 
driver’s license) 

No Car = 1; transit, bicycle, walk = 0 

Weather protection 
(-) 

No Car, transit = 1; bicycle, walk = 0 

Luggage (-) No Car = 1; transit = 0.5; bicycle, walk = 0 
Shared (-) No Car, bicycle, walk = 0; transit = 1 
Availability (-) No Car = 1; transit = 0.5; bicycle = 1, walk = 1 
Reservation (-) No Car, bicycle, walk = 1; transit = 0 
Active (-) No Car, transit = 0; bicycle, walk = 1 
Accessible (-) No Transit = 1; Car, bicycle, walk = 0 

*Addable and non-addable attributes are implemented differently in the edge/route resistance 
calculations (see Eq. 1 and Eq. 2). 
 
When agents want to switch modes, the resistance in the considered route also contains the time 
it takes to disembark from the mode, and embark to the mode (see Table 2) and the ‘initial cost’ 
of a mode (see Table 1). The times in these edges are multiplied by 3 to represent the extra mental 
effort it takes for users to switch modes and wait for the next mode (Wardman, 2004). 
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Table 2: Assumed time to switch modes, multiplied by 3 to model extra mental 
effort for switching mode, based on (Wardman, 2004) 

Mode Neutral to mode Mode to neutral 
Car 5 min (get in car) 2 min (parking) 
Transit 
(BTM) 

7.5 min (average waiting time, ass. 
freq.: 15 min) 

5 min 

Bicycle 1 min (get on bike) 1 min (parking) 
Walk 0 min 0 min 

 
The total resistance per route is defined as the sum of the edge resistances. Edge resistances are 
the sum of a series of products of mode attributes and the valuations of these attributes by users. 
For the modelling approach, homogenous groups of users are combined in clusters. There are two 
categories of mode attributes; one category which is addable over the route regardless of the 
length of each edge and the length of the route (e.g., travel time, costs) (see Eq. 1) and one 
category which is not addable over the route. The attributes within this last category need to be 
weighted with the length of each edge within the route to come to a weighted average value for 
those attributes (e.g., weather protection on 70% of the total length of the route) (see Eq. 2). These 
two edge resistance calculations are combined in Eq. 3, where the resistances of all edges in one 
route are summed up and divided by the length of that route to get the ratio of the mode attributes 
of each edge respective to their share in the total route. A multinomial logit model (MNL) (Ortuzar 
& Willumsen, 2011) with en-route route choice is used to determine the mode/route choice based 
on the route resistance. IIA (Independence of Irrelevant Alternatives) is assumed for all modes in 
this study. 
 
 𝐸!""!#$%,',(,) = ∑ 𝛽)𝜒*,',( ,				∀𝑘 ∈ 𝐾*

+      Eq. 1 

 𝐸),)-!""!#$%,',(,) = 𝑙𝑒𝑛' ∗ ∑ 𝛽)𝜒.,',( ,				∀𝑚 ∈ 𝑀.
+    Eq. 2 

 𝑈/,(,) = ∑ 𝐸!""!#$%,',(,)'∈1 + ∑ 3!"!#$%%$&'(,*,+,!*∈-
4

    Eq. 3 
 
where;  

𝑈 = route resistance [-]; 
𝐸!""!#$% = edge resistance addable component [-]; 
𝐸),)-!""!#$% = edge resistance non-addable component [-]; 
𝛽 = cluster valuation of mode attribute [-];  
𝜒 = value of mode attribute [-];  
𝑙𝑒𝑛 = length of edge [km];  
𝐿 = length of route [km]; 

𝑛 = cluster index [-]; 
𝑖 = edge index of edges within route [-]; 
𝑘 = addable mode attribute index [-];  
𝑚 = non-addable mode attribute index [-];  
𝑡 = time index [-]; 
𝑟 = route index [-]; 

𝐼 = set of edges within mode layers in route 𝑟; 
K = set of addable mode attributes (e.g., travel time); and 
M = set of non-addable mode attributes (e.g., weather protection). 

 
The valuation (i.e., observed preferences for travellers for attributes) of the attributes have been 
estimated using a large-scale trip survey in the Netherlands (CBS, 2017) for the year 2017. The 
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dataset contains personal, trip, and mode information. It contains five main transport modes: car, 
carpool, transit (BTM), bicycle, and walk. This dataset is further enriched with the mode attributes 
(see Table 1). Further more, clusters of travelers with similar characteristics have been identified, 
using k-means clustering and the elbow method to define the optimal number of clusters for the 
trips. The estimated valuations for the six clusters are shown in Table 3. Note that some 
parameters have different signs per cluster. This can be explained by considering that some 
clusters value certain traits positively (e.g., higher costs are a status symbol) and other clusters 
value certain traits negatively (e.g., higher costs make a mode less affordable). Because these 
attributes capture almost all aspects that determine mode and route choice, mode specific 
constants are no longer needed. The valuations of the attributes (i.e., betas) are also no longer 
mode-specific and therewith transferable to new modes.  
 
Table 3: Mode attribute valuations per cluster (De Clercq et al., 2022) 

Cluster 1 2 3 4 5 6 
(Initial) Cost 0.0193 -0.0267 -0.0343 0.0229 -0.0123 -0.0806 
Time -0.0208 -0.0439 -0.0207 -0.0243 -0.036 -0.0218 
Driving task -0.571 -0.0884 -0.855 -1.21 -0.129 -1.2 
Skills -0.16 2.17 1.44 2.22 -2.81 1.52 
Weather protection -1.07 -0.402 -0.284 -0.781 -1.22 -0.0638 
Luggage -1.08 -1.39 -0.0653 -0.719 -0.952 -0.248 
Shared -0.611 -2.01 -1.25 -3.8 1.3 -1.43 
Availability -1.87 -3.96 -1.44 -8.28 -0.24 -2.46 
Reservation -0.733 -1.74 -0.292 0.313 1.79 0.672 
Active 0.74 -0.00596 0.314 0.58 1.22 0.314 
Accessible -0.671 -2.58 -1.25 -3.49 1.41 -1.94 

 
Case-study: Delft to Rotterdam 
Figure 2 visualizes the network with first-mile, main, and last-mile edges for an example OD-
relation between Delft and Rotterdam. Nodes depict centroids and mobility hubs (the network 
definition does not contain centroid feeders). First- and last-mile edges have multiple modes. The 
origin and the destinations are indicated using O and D respectively. Figure 3 gives a 
supernetwork representation of this network with five modes for which the model has been 
estimated (the reference case) and an added sixth mode shared e-bicycles (for the ‘new mode’ 
alternative). The network contains transition links between modes through a neutral layer. Note 
that when switching mode, an agent always needs to leave the mode, enter the neutral layer, and 
enter the new mode. The possible transfers on certain locations (circles) between modes are 
depicted with the vertical dashed lines. One example multimodal route is visualized in yellow, 
where the bicycle is used to cycle from the centroid (O, Delft) to the station, transit is used as 
main mode and walking is used for the last-mile to the destination (D, Rotterdam).  
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Figure 2: OD relation between Delft and 
Rotterdam. 

 
Figure 3: Supernetwork of the route 
between Delft and Rotterdam 

 
The implementation of shared electric bicycles can come with different variants for initial costs, 
speed, generalized transit times from the neutral layer to shared e-bicycles and vice versa. These 
variants are described in Table 4. The possible combinations (81) of these attribute values form 
scenarios. These scenarios are simulated to analyse the effects of a different level of service of 
shared electric bikes on the modal split and travel times. 
 
Table 4: Attribute values 

Nr. Attribute Pricing policy 
1 Initial cost shared electric step [€] 3.2 – 4.0 – 4.8 
2 Speed [km/h] 20 – 25 - 30 
3 Neutral to e-bike [min] 2.4 – 3.0 – 3.6 
4 E-bike to neutral [min] 1.6 – 2.0 – 2.4 
5 Network [-] With/without e-bicycles 

 
Simulation 
For the simulation, the earlier identified six clusters of travelers are used; 166 trips for each cluster 
are simulated. A timestep of 1/100 hours (=36 sec) is used. This time step is chosen such that an 
agent will spend at least two timesteps on the shortest link (1.8 km) considering the highest free 
flow speed in this model (90 km/h). The simulated time period in the model is 4 hours representing 
a morning peak hour from 6 am to 10 am. The same seed number is used in all simulations to be 
able to compare different scenarios. The number of transfers between modes in the multimodal 
networks is limited to 2 (first-mile à main à and last-mile). Since transit is modelled in one 
layer and contains all bus, tram, metro (BTM) transit, this is assumed to be realistic. 
 
 

3. RESULTS AND DISCUSSION 

The results of the simulations, including sensitivity analysis results between brackets, are shown 
in Table 5-7. It can be observed that the modal share of shared e-bicycles ranges between 35.3 
and 40.5% in unimodal trips and occurs in 36.2-46.3% of the multimodal trips, indicating that 
shared e-bicycles can significantly change the modal split between Delft and Rotterdam, reducing 
mainly the modal share of cars, cycling, and, to a lesser extent, transit and walking. When looking 
at the total distance travelled per mode for all scenarios, it is interesting to point out that walking 
is used at least in 41.7% of the multimodal trips but amounts to only a maximum of 0.6% of all 
distance travelled. This indicates that walking occurs for first- and last-mile as would be expected. 
The average travel time changes depending on the configuration of shared e-bicycles, indicating 

Nodes
Train
(e-)bicycle + bus
Car
(e-)bicycle + bus 
+ walkO

D

Delft (O) 

Rotterdam (D) 

12 km 
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that travel time can be improved by introducing shared e-bicycles but depend on the level of 
service that shared e-bicycles have when they are introduced on the roads. 
 
 
Table 5: Modal split (trips) with and without shared e-bicycle, including sensitivity 
analysis results between brackets 

  Modal split [%] 
Car Transit Bicycle Walk E-bicycle Multimodal 

No e-
bicycles 45,4 0,8 45,8 0,0 - 8,0 

E-bicycles 28,2 0,5 25,3 0,0 40,5 5,5 
[25,5 - 30,4] [0,2 - 0,5] [23,4 - 25,9] [0,0 - 0,0] [35,3 - 40,5] [5,1 - 5,8] 

  Modal split of multimodal trips [%]* 
Car Transit Bicycle Walk E-bicycle   

No e-
bicycles 0,0 60,6 89,0 60,2 -   

E-bicycles 
0,0 37,6 75,8 51,7 44,0   

[0,0 - 0,0] [28,6 - 37,6] [67,9 - 75,8] [41,7 - 51,7] [36,2 - 46,3]   
*The modal split of mixed trips amounts to more than 100% since multiple modes can occur in 
one single trip. The numbers can be interpreted as the percentage of the mixed trips that contain 
a certain mode. 

Table 6: Modal split (distance) with and without shared e-bicycles, including 
sensitivity results between brackets 

  
Modal split [% of distance] 

Car Transit Bicycle Walk E-bicycle Multimodal 
No e-

bicycles 43,6 0,9 46,6 0,0 - 8,8 

E-bicycles 
26,9 0,6 25,6 0,0 41,0 6,0 

[24,2 - 28,9] [0,3 - 0,7] [23,6 - 29,6] [0,0 - 0,0] [35,7 - 45,2] [5,5 - 7,7] 

  
Modal split of multimodal trips [% of distance] 

Car Transit Bicycle Walk E-bicycle   
No e-

bicycles 0,0 3,1 5,1 0,6 -   

E-bicycles 0,0 1,3 2,5 0,4 1,8   
[0,0 - 0,0] [0,7 - 1,6] [2,1 - 3,8] [0,3 - 0,5] [1,5 - 2,4]   

 
Table 7: Average speed, distance, and duration with and without shared e-bicycles, 
including sensitivity analysis results between brackets 

  Average speed 
[km/hr] 

Average distance 
[km] 

Average duration 
[min]  

No e-bicycles 23,64 15,40 43  

E-bicycles 24,01 15,56 41  
[22,09 - 25,99] [15,52 - 15,61] [38 - 45]  

 
The results in this study are plausible in the sense that the e-bicycle mainly replaces car and bike 
trips. This is in line with the findings in Sun et al. (2020). They used a longitudinal dataset from 
the Netherlands Mobility Panel to analyze the modal shift effects of people who bought an e-
bicycle. However, the potential modal share of shared e-bicycles is slightly higher than the study 
of Sun et al (2020) shows. For trips of about 15 kilometres, they found a modal share of 33-36%. 
This might be explained by the relatively high share of normal bicycles in the reference situation 
for this specific origin-destination pair and the fact that a multinomial logit model is used to 
determine the next node for each agent, which does not account for overlap (‘red/blue-bus 
paradox’). 
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4. CONCLUSIONS AND RECOMMENDATIONS 
 
This study successfully demonstrated how an agent-based unlabelled multimodal supernetwork-
based traffic assignment model can be used to assess the effects of new modes such as shared 
electric bicycles on the modal split for an example origin-destination pair Delft- Rotterdam. This 
is done by using a supernetwork framework, where each available mode is modelled as a specific 
layer within this supernetwork with nodes and edges, where the edges’ resistances are described 
by a set of attributes without an alternative-specific constant. The mode-specific layers are 
interconnected to a neutral layer with edges representing transfer resistances, also described with 
a set of attributes. The unlabelled approach, i.e., without mode specific parameters and constants, 
makes it possible to add any new mode. 
 
The results show plausible modal-shift effects from cars and bicycles to shared electric bicycles. 
However, the absolute modal share seems slightly overestimated because overlap is not 
considered. To account for overlap in routes (and similar modes), it is recommended to explore 
grouping layers of similar modes and overlapping routes into one ‘nest’ by using a path-overlap 
factor. A path size correction logit model (PSCL) in combination with a multiplicative MNL is 
expected to work well on real networks (Bovy et al., 2008; Smits et al., 2018). PSCL models exist, 
for transit only, based on the shared number of transfer nodes, edges and travel times, which have 
higher accuracy for transit, but these models cannot be applied on car transport (Dixit et al., 2021). 
Since both transit and car modes are used, this method is not trivial to implement on a multimodal 
supernetwork.  
 
The modular approach of this supernetwork allows for further explorations of other new modes, 
more scenarios, and other network configurations. Recommended options to explore further are 
to include other new modes, pricing policies, adding a time-based transit schedule, and changing 
the availabilities and stops of transit or other modes. Further, no disruptions (e.g., weather 
conditions, accidents) are analyzed in this study yet. Disruptions could be implemented by 
temporarily increasing the edge resistance in some places. This could be an approach to give 
insight into how a new mode changes the travel time reliability of a system. Finally, it is 
recommended to integrate this multimodal supernetwork in a land-use-transport interaction model 
to see how higher-order aspects, such as activity patterns, change over the years as a result of the 
introduction of new transport modes. 
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