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SHORT SUMMARY 

Space-time prism (STP) delimits the space-time opportunities reachable by a moving object and is 

widely applied to measure the ability of individuals to travel and participate in activities. The majority 

STPs are binary measures in that all locations are considered equally accessible if within the prisms. A 

few probabilistic STP models discussed heterogeneous interiors, but they focus on the trip level and 

have not addressed daily activity programs with flexible activity sequences. This study proposes a 

model framework to construct and estimate the state-dependent probabilistic STP of daily activity-travel 

patterns based on the multi-state supernetwork representation. Utilizing GPS trajectories, the estimation 

and simulation results of visit probabilities in the STPs demonstrate the validity of the model framework.  
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1. INTRODUCTION 

Individuals’ travel and activity participation are subject to space-time constraints. As a central time 

geographic concept, space-time prism (STP) delimits the space-time opportunities that can be reached 

by a moving object (Miller, 2017), and provides a measurement of potential mobility. The classic STP 

is determined by the known anchor points, time budget, the maximum attainable travel speed, and the 

time available for a flexible activity that can be conducted at one of multiple locations (Hägcrstrand, 

1970). By constructing the STP over a transportation network, the network-time prism delimits the 

accessible locations with respect to the spatial network (Miller, 1991). The boundary of an STP has 

been widely used as a space-time accessibility measurement, indicated by a spatial location set at instant 

times within time intervals.  

 

The majority STPs are deterministic binary measures such that all locations are considered equally 

accessible if within the prisms, otherwise not accessible. In reality, a prism does not have homogeneous 

interiors. To capture the variations within a prism, Winter and co-workers (Winter, 2009; Winter and 

Yin, 2010a, 2010b) introduced probabilistic time geography and modeled probability distributions of 

an individual’s potential visit locations at a time moment from a stochastic perspective. Song and Miller 

(2013) formulated discrete and continuous stochastic models for the movement of an individual within 

the potential path area (PPA). In Song et al. (2016, 2017) , the visit probability within a directed STP is 

modeled using the approach of continuous-time semi-Markov process, describing the likelihood of 

visiting different locations within the prism.  

 

In previous studies, STP is predominantly modeled at the trip level with single activities rather than for 

daily activity programs (APs). To capture the dependencies in an activity chain and improve realism, 

Chen and Kwan (2012) identified the location choice set based on STPs in the presence of all possible 
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activity-travel chains. Kang and Chen (2016) constructed the feasible space-time region for a daily AP 

by intersecting a set of feasible space-time regions for single activities. Liao (2021) applied bidirectional 

searches of full activity-travel patterns (ATPs) in multi-state supernetworks (SNK) (Liao, Arentze, and 

Timmermans, 2010, 2013) for delineating the exact STP for an AP. However, the probabilistic 

characteristics of accessibility within a prism have not been investigated for an AP with multiple 

activities and flexible activity sequences.  

 

The aim of this study is, therefore, to propose a model framework to construct and estimate the 

probabilistic STP of an AP. The model framework  includes three steps. First, based on the multi-state 

supernetwork, we construct the activity-based STP for a daily AP with flexible activity sequences (Liao, 

2021). Second, we model the visit probability within the activity-based STP using semi-Markov 

techniques (Howard, 1971). Third, we estimate a visit probability model using extracted GPS 

trajectories and simulate a typical AP to demonstrate the validity of the model framework. The visit 

probabilities of an AP provide quantitative descriptions of the activity-based STP interiors and 

evaluations of the accessibility for an individual participating in multiple activities with flexible 

sequences.    

2. METHODOLOGY 

Multi-state supernetwork (SNK) representation and STP 

Multi-state supernetworks are capable of representing ATPs of conducting an individual’s AP.  A daily 

AP’s implementation is a path choice through networks of different states, including activity states 

specifying which activities have been conducted, and vehicle states specifying where the private 

vehicles are (in use or parked somewhere).  

 

Denote a multi-state supernetwork as 𝑆𝑁𝐾(𝑁, 𝐸). The set of nodes 𝑁  indicates locations in SNK, 

including road intersections, activity locations, and parking locations. A set of links 𝐸 includes travel 

links of road segments, transaction links for conducting activities at activity locations, transition links 

for parking and picking up PVs, and boarding and alighting. 

 

Given origin H0 and destination H1 as two anchors and the corresponding time budget [𝑡H0 , 𝑡H1], the 

STP is constructed by deriving the potential path area (PPA) of an AP. The temporal feasibility of STP 

in SNK is formulated as follows (Liao, 2021): 

 

min{𝑔H0(𝑛|𝑠) + 𝑔H1(𝑛|𝑠)} ≤ 𝑡H1 − 𝑡H0 (1) 

 

where 𝑛|𝑠  denote node 𝑛  at activity-vehicle state 𝑠 , 𝑔H0(𝑛|𝑠) and 𝑔H1(𝑛|𝑠) are the actual activity-

travel times from H0 to 𝑛|𝑠 and 𝑛|𝑠 to H1 respectively.  

Visit probability within the STP 

We define a status as a movement starting from node 𝑖|𝑠 to node 𝑗|𝑠′  along link 𝑙𝑖𝑗|𝑠𝑠′  in SNK that has 

not arrived at 𝑗|𝑠′  yet, 𝑙𝑖𝑗|𝑠𝑠′ = (𝑖|𝑠, 𝑗|𝑠′) for ∀𝑠, 𝑠′. The status space includes the movements on all 

possible links within the STP. We formulate the holding time density functions of SNK links and the 

visit probability of each status at a moment in time. 

 

(1) Holding time density functions  

A holding time density function describes the probability that a transition from 𝑖|𝑠 to 𝑗|𝑠′ , corresponding 

to the movement on link 𝑙𝑖𝑗|𝑠𝑠′ , will take extra time 𝜏 over the minimum time on 𝑙𝑖𝑗|𝑠𝑠′ , denoted as 

𝑓𝑖𝑗|𝑠𝑠′(𝜏) when 𝜏 ≥ 0, otherwise 𝑓𝑖𝑗|𝑠𝑠′(𝜏) = 0 . The extra time 𝜏 on 𝑙𝑖𝑗|𝑠𝑠′  can be calculated using  
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𝜏 = 𝜏′ − 𝑡𝑖𝑗|𝑠𝑠′ , where 𝜏′ is the total time one traverse 𝑙𝑖𝑗|𝑠𝑠′  and 𝑡𝑖𝑗|𝑠𝑠′  is the minimum time expense 

from 𝑖|𝑠  to 𝑗|𝑠′ . For travel link 𝑙𝑖𝑗|𝑠𝑠′  that 𝑖 ≠ 𝑗  when 𝑠 = 𝑠′ , 𝑡𝑖𝑗|𝑠𝑠′  is the minimum travel time. If 

conducting activity 𝛼 ∈ 𝐴 at location 𝑖 (𝑖 = 𝑗) at state 𝑠 results in a new state 𝑠′, that is 𝑠 ≠ 𝑠′, 𝑙𝑖𝑗|𝑠𝑠′  is 

an activity link and 𝑡𝑖𝑗|𝑠𝑠′  corresponding to the minimum activity duration 𝑑𝛼. 

 

Considering parameters of 𝑓𝑖𝑗|𝑠𝑠′(𝜏) are heterogeneous for travel and transaction links, we use the 

latent class models to capture the latent heterogeneity of holding times. Suppose there exist 𝐾 different 

homogeneous latent classes in the heterogeneous population of extra travel times and activity durations. 

Let 𝑃𝑞𝑘 denote the class membership probability that an individual 𝑞 belongs to latent class 𝑘: 

 

𝑃𝑞𝑘 =
exp(𝜷𝑘𝒙𝑞)

∑ exp(𝜷𝑘𝒙𝑞)
𝐾
𝑘=1

, 𝑘 = 1,… , 𝐾, 𝜷𝐾 = 0 (2) 

 

where 𝒙𝑞 is the vector of sociodemographic variables of individual 𝑞, 𝜷𝑘 is the parameter vector of 𝒙𝑞 

of latent class 𝑘. The latent class holding time density function for extra time is formulated as 

 

𝑓𝑞(𝜏) = ∑𝑃𝑞𝑘 ∙ 𝑓
𝑞(𝜏|𝑘)

𝐾

𝑘=1

(3) 

 

where 𝑓𝑞(𝜏|𝑘) denotes the probability of individual 𝑞 that belongs to class 𝑘 spending extra time 𝜏 on 

a specific link in SNK, and 𝑓𝑞(𝜏) is the probability of unconditional holding time density. 

 

(2) Visit probability formulation 

For each link 𝑙𝑖𝑗|𝑠𝑠′  in SNK, we can calculate a feasible time range as  (𝑡𝑖|𝑠
− , 𝑡𝑗|

𝑠′

+ ), where 𝑡𝑖|𝑠
−  is the 

earliest arrival time and 𝑡𝑗|
𝑠′

+  is the latest departure time at 𝑖|𝑠 and 𝑗|𝑠′  in SNK, respectively. The visit 

probability in SNK as an extension over Song et al. (2016) is defined as follows. 

 

Denote 𝑃H0→𝑖|𝑠(𝑡) as the probability 𝑙𝑖𝑗|𝑠𝑠′  can be reached from 𝑖|𝑠 at 𝑡 given origin H0, formulated as 

 

𝑃H0→𝑖|𝑠(𝑡) =

{
  
 

  
 

0                                                 𝑡 ∈ [𝑡H0 , 𝑡𝑖|𝑠
− )                              

∫ 𝑓𝑖𝑗|𝑠𝑠′(𝜏)𝑑𝜏
𝑡−𝑡H0

𝑡𝑖|𝑠
− −𝑡H0

                       𝑡 ∈ [𝑡𝑖|𝑠
− , 𝑡𝑗|

𝑠′

+ − 𝑡𝑖𝑗|𝑠𝑠′)             

∫ 𝑓𝑖𝑗|𝑠𝑠′(𝜏)𝑑𝜏
𝑡𝑗|
𝑠′

+ −𝑡
𝑖𝑗|𝑠𝑠′

−𝑡H0

𝑡𝑖|𝑠
− −𝑡H0

        𝑡 ∈ [𝑡𝑗|
𝑠′

+ − 𝑡𝑖𝑗|𝑠𝑠′ , 𝑡H1]              

(4) 

 

Denote 𝑃𝑗|
𝑠′
→H1

(𝑡) as the probability of reaching H1  from 𝑗|𝑠′  based on available departure times,  

formulated as 

 

𝑃𝑗|
𝑠′
→H1

(𝑡) =

{
 
 
 

 
 
 0                                                         𝑡 ∈ [𝑡𝑗|

𝑠′

+ , 𝑡H1]                           

∫ 𝑓𝑖𝑗|𝑠𝑠′(𝜏)𝑑𝜏
𝑡H1−𝑡

𝑡H1−𝑡𝑗|𝑠′
+

                       𝑡 ∈ [𝑡𝑖|𝑠
− + 𝑡𝑖𝑗|𝑠𝑠′ , 𝑡𝑗|

𝑠′

+ )           

∫ 𝑓𝑖𝑗|𝑠𝑠′(𝜏)𝑑𝜏
𝑡H1−𝑡𝑖|𝑠

− −𝑡
𝑖𝑗|𝑠𝑠′

𝑡H1−𝑡𝑗|𝑠′
+

               𝑡 ∈ [𝑡H0 , 𝑡𝑖|𝑠
− + 𝑡𝑖𝑗|𝑠𝑠′)            

(5) 

    

The probability for visiting 𝑙𝑖𝑗|𝑠𝑠′  at 𝑡 ∈ [𝑡H0 , 𝑡H1], denoted as 𝑃(𝑙𝑖𝑗|𝑠𝑠′ , 𝑡), is formulated as the joint 

probability of 𝑙𝑖𝑗|𝑠𝑠′  being reached from 𝑖|𝑠  and arriving at H1  within (𝑡H1 − 𝑡) . We normalize 
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probabilities among all accessible links at time 𝑡 within the STP in SNK, for which all probabilities are 

added up to 1. 

 

𝑃(𝑙𝑖𝑗|𝑠𝑠′ , 𝑡) =
𝑃H0→𝑖|𝑠(𝑡) × 𝑃𝑗|𝑠′→H1

(𝑡)

∑ 𝑃(𝑙, 𝑡)𝑙∈𝐸
, 𝑡𝑖|𝑠
− + 𝑡𝑖𝑗|𝑠𝑠′ ≤ 𝑡𝑗|

𝑠′

+ (6) 

 

Eq. (6) can be used to derive the visit probability of each link and the discrete distribution of the status 

space at a time moment in SNK. 

Model estimation 

We extract a transportation network and collect individuals’ ATPs from GPS trajectories to estimate 

the holding time density functions for visit probability in the following steps. 

 

Step 1: Calculate the extra available times for road segments and different types of activities. For travel 

links (road segments), the extra time of a sampled ATP is calculated as: 

 

𝜏 = 𝑟𝑒𝑐(𝑡𝐴𝑇𝑃) − min(𝑡𝐴𝑇𝑃) (7) 

 

where 𝑟𝑒𝑐(𝑡𝐴𝑇𝑃) is the recorded ATP time from GPS data, min(𝑡𝐴𝑇𝑃) is the shortest ATP time with the 

same activity durations calculated using a path searching algorithm. Suppose 𝑓𝑖𝑗|𝑠𝑠′(𝜏) of travel link 

𝑙𝑖𝑗|𝑠𝑠′  follows an exponential distribution, i.e., 

 

𝑓𝑖𝑗|𝑠𝑠′(𝜏) = {
𝜆𝑒−𝜆𝜏,      𝜏 ≥ 0
0,              𝜏 < 0

(8) 

 

𝑓𝑞(𝜏|𝑘) in Eq. (3) is substituted by Eq. (8) as 𝑓
𝑖𝑗|𝑠𝑠′
𝑞 (𝜏|𝜆𝑘), with parameter 𝜆𝑘 (𝑘 = 1,2,… , 𝐾) to be 

estimated. 

 

For transaction links of different types of activities, the extra activity duration of a sampled ATP is 
calculated as: 

 

𝜏𝛼 = 𝑟𝑒𝑐(𝜏𝛼) − min(𝜏𝛼) (9) 
 

where 𝑟𝑒𝑐(𝜏𝛼)  is the recorded ATP’s activity duration for conducting activity 𝛼 , min(𝜏𝛼)  is the 

minimum duration of 𝛼 among all the extracted ATPs. We suppose 𝑓𝑖𝑗|𝑠𝑠′(𝜏) (denoted as 𝑓𝛼(𝜏)) of 

conducting 𝛼 follows the lognormal distribution, i.e., 

 

𝑓𝛼(𝜏) =
1

𝜏𝜎√2𝜋
exp (−

(ln(𝜏) − 𝜇)2

2𝜎2
) , 𝜏 > 0 (10) 

 

𝑓𝑞(𝜏|𝑘) in Eq. (3) is substituted by Eq. (10) as 𝑓𝛼
𝑞
(𝜏|𝜇𝑘 , 𝜎𝑘

2), with parameter 𝜇𝑘, 𝜎𝑘
2(𝑘 = 1,2, … , 𝐾) to 

be estimated. 

 

Step 2: Estimate the parameters using maximum likelihood estimation (MLE). Given 𝑁  the total 

number of extracted individuals’ ATP, the likelihood for all individuals is: 

 

𝐿 =∏[∑𝑃𝑞𝑘 ∙ 𝑓
𝑞(𝜏|𝑘)

𝐾

𝑘=1

]

𝑁

𝑞=1

=∏[∑
exp(𝜷𝑘𝒙𝑞)

∑ exp(𝜷𝑘𝒙𝑞)
𝐾
𝑘=1

∙ 𝑓𝑞(𝜏|𝜽𝑘)

𝐾

𝑘=1

]

𝑁

𝑞=1

(11) 
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where 𝜽𝑘 are the parameters in Eq. (8) or Eq. (10) for travel and transaction links. The log-likelihood 

for the sampled ATPs is: 

 

ln 𝐿 = ∑(ln∑𝑃𝑞𝑘 ∙ 𝑓
𝑞(𝜏|𝜽𝑘)

𝐾

𝑘=1

)

𝑁

𝑞=1

(12) 

 

We apply the gradient-descent method as a solution to solve the MLE for latent class models. The 

estimated parameters are used in simulating the visit probabilities in Eqs. (4-6). 

3. RESULTS  

The suggested model framework is implemented for an AP in a transportation network. STPs and visit 

probabilities are simulated for each activity state in SNK every 5 min in peak hours and 30 min in non-

peak hours for travel links and activity locations.  

Estimation results 

In the numerical experiment, 2714 individuals’ ATPs with one fixed workplace and one flexible activity 

(non-daily shopping) are extracted from GPS data. We select an AP in the Eindhoven area (the 

Netherlands) to simulate the STP construction and the visit probabilities within the STP (Figure 1). 

The settings are as follows: 

 

(1) The time budget is 742 min, 10% extra over the recorded ATP time. Given the recorded ATP 

departure time 𝑡H0 = 6: 20, the time window is [6:20, 18:42]. 816 flexible activity locations are selected 

as alternatives for non-daily shopping. The recorded minimum duration of working and flexible activity 

are 558 min and 36 min respectively.  

(2) The road network includes 47,901 nodes and 10,0581 directed road segments. The car speeds for 

non-peak hours [7:00, 9:00] and peak hours [16:30, 19:00] on 3 types of roads are <100, 80, 50> and 

<70, 50, 30> km/h.  

 

 
Figure 1. Selected ATP (anchors: red: home; yellow: workplace; blue line: GPS trajectory). 
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(3) The parameters of 𝑓𝑞(𝜏) for the traveling and non-daily shopping are estimated. Individual 𝑞’s 

gender and age are selected as the sociodemographic variables as 𝑥𝑞1 and 𝑥𝑞2. Let 𝑥𝑞1 = 0 if individual 

𝑞 is male, 𝑥𝑞1 = 1 when 𝑞 is female; 𝑥𝑞2 = 0 if individual 𝑞’s age is between 20 to 59, 𝑥𝑞2 = 1 when 

age ≥ 60. The estimation outcomes of the latent class models are shown in Tables 1-6 (See Tables in 

the Appendix).  

(4) For travel links, 4 activity states are simulated based on whether work and non-daily shopping are 

conducted in different sequences. For transaction links, 2 states are simulated, i.e, the flexible activity 

is conducted before and after work. 

Illustration of visit probabilities 

Travel links 

The visit probabilities of travel links within the STPs reflect the heterogeneous interior for traveling 

with purpose, which is non-uniform and changing over activity states and time moments.  

 

At activity state 0, the individual departs at 6:20 traveling to conduct the fixed and flexible activities. 

The number of travel links within STPs increases given available time during [6:20, 7:30], and decreases 

during [7:40, 8:30] since 558 min work has to be done (Figure 2). At activity state 2 where the 36-min 

non-daily shopping is conducted within [6:20, 7:00], the individual has more time for visiting more 

travel links at the same time point during [8:00, 8:55] at state 2 compared to the situation at state 0 (see 

in Figure 3 (a) and (b) at 8:20). 

 

There are no travel links within STP between (8:55, 16:00) since the individual is working. After 16:00 

at activity state 1, the individual searches locations of non-daily shopping after work is conducted 

(Figure 4). At activity state 3 that all activities are done, around 30 to 40 min are available for the 

individual traveling to home during [16:40, 18:40], and thus more links can be accessed compared to 

the situation at state 1 (see Figure 5 (c) and (d) at 18:00).  

 

As shown in the results, the distribution of locations, activity sequences, available time, and the shortest 

path direction, together result in the changes of “higher visit probability travel links” (darker red).  

 

 

 
(a) 6:25, none is conducted 

 
(b) 6:30, none is conducted 

 
(c) 6:40, none is conducted 

 
(d) 7:30, none is conducted 

 
(e) 8:20, none is conducted 

 
(f) 8:30, none is conducted 

Figure 2. STPs interior of travel links at activity state 0. 
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Figure 3. STPs interior of travel links at activity state 2. 

 

 

 

  

 
(a) 16:00, work is conducted 

 
(b) 16:30, work is conducted 

 
(c) 17:40, work is conducted 

 
(d) 18:00, work is conducted 

Figure 4. STPs interior of travel links at activity state 1. 
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(a) 16:40, all are conducted 

 
(b) 18:30, all are conducted 

 
(c) 18:00, only work is conducted 

 
(d) 18:00, all are conducted 

Figure 5. STPs interior of travel links at activity state 3. 
 

Flexible activity locations 

The level of accessibilities of the flexible activity locations within the STPs are reflected by the visit 

probabilities, which changes over activity sequence and time moments.  

 

 

 
(a) 6:25, before work  

 
(b) 6:40, before work  

 
(c) 8:10, before work  

 
(d) 8:50, before work  

Figure 6. STPs interior of flexible activity locations before work. 
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(a) 16:00, after work  

 
(b) 16:30, after work  

 
(c) 17:30, after work  

 
(d) 18:20, after work  

Figure 7. STPs interior of flexible activity locations after work. 
 

The number of flexible activity locations within the STP increases during [6:20, 7:40] and the locations 

near home have relatively higher visit probabilities. After 8:00, the closer to the workplace, the higher 

visit probabilities of the locations are compared to the ones near home due to the available time (Figure 

6). After work is conducted (Figure 7), the accessible locations first expand from the center of the 

workplace with higher probabilities and finally shrink to home at 18:20, given 𝑡H1 =18:42 and the 36-

min flexible activity duration.  

4. CONCLUSIONS  

The state-dependent STPs of an AP delimit the potential mobility of an individual to access locations 

with limited time, but the deterministic characteristic of STP lacks the evaluation of how likely a 

location within the STP can be visited. This study proposes a model framework to construct and estimate 

the probabilistic STP of an AP based on the multi-state supernetwork representation. By assuming the 

distributions of holding time density functions of travel and transaction links in SNK, latent class models 

are further applied to capture and estimate the individuals’ latent heterogeneity on extra time for 

traveling and conducting activities. The results illustrate that the visit probabilities of travel links and 

activity locations over different activity states and time points can describe the interior of the STPs. In 

the next step, we will develop proper accessibility measurements based on the quantifications of visit 

probabilities.  
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APPENDIX 

Tables 1-3 report the estimated parameters of 𝑓𝑞(𝜏) and the percentages that the sample belongs to each 

class with the highest membership probability for non-daily shopping, working, and traveling, 

respectively. To reflect the fit of the latent class models, Tables 4-6 shows the test results of Bayesian 

Information Criteria (BIC) and likelihood ratio (LR) given various numbers of classes, based on the 

assumptions of distributions and the hypotheses of the parameters.  

 

The estimated parameters of latent class models: 

a. Flexible activity: non-daily shopping 

 

Table 1. Parameters and highest 𝑃𝑞𝑘 percentages of selected class number 

Class 𝜷𝑘 𝝁𝑘 , 𝝈𝑘 Sample 𝑁𝑘 / Highest 𝑃𝑞𝑘  % 

 const 0 𝜇1 2.7109 

365 100% 1 gender 0 𝜎1 1.9683 
 age 0   
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b. Fixed activity: working 

 

Table 2. Parameters and highest 𝑃𝑞𝑘 percentages of selected class number 

Class 𝜷𝑘 𝝁𝑘 , 𝝈𝑘 Sample 𝑁𝑘 / Highest 𝑃𝑞𝑘  % 

1 

const 0.536 𝜇1 6.2672 

1234  45.47% gender -0.6813 𝜎1 0.0941 

age -0.4178   

2 

const 0 𝜇2 5.2213 

1480 54.53% gender 0 𝜎2 0.9410 

age 0   

 

c. Travel links 

 

Table 3. Parameters and highest 𝑃𝑞𝑘 percentages of selected class number 

Class 𝜷𝑘 𝝀𝑘 Sample 𝑁𝑘 / Highest 𝑃𝑞𝑘  % 

1 

const 1.7586 

𝜆1 0.0271 380 24.58% gender -2.9839 

age -2.7812 

2 

const -0.8908 

𝜆2 0.0346  842 54.46% gender 2.963 

age 0.2311 

3 

const 0 

𝜆3 0.0310 423 20.96% gender 0 

age 0 

 

 

The results of the fit of the latent class models:  

 

a. Flexible activity: non-daily shopping 

 

Table 4. BIC and LR with latent classes number 

Number 

of classes 

Number of 

Parameters 
Log-likelihood ln(𝐿) BIC 

LR  

(LR-val / p-val (df)) 

1 5 -1754.5719 3520.9438 0.5649 / 0.7539 (2) 

2 10 -1697.8948 3454.7885 113.9192 / 8.6267e-20 (10) 

3 15 -1681.2356 3450.9697 147.2378 / 8.5223e-24 (15) 

4 20 -1675.6434 3469.2848 158.6689 / 1.3564e-23 (20) 

5 25 -1665.4855 3478.4684 173.3506/ 3.6977e-24 (25) 

10 50 -1650.1866 3595.3681 202.0330/ 3.6134e-20 (50) 

𝐵𝐼𝐶 = 𝑃 ln(𝑁) − 2 ln(𝐿) ; 𝑃: number of 𝜷𝑘 + number of 𝜇𝑘, 𝜎𝑘
2 

LR test: The null hypothesis:  𝜇𝑘 =
1

𝑁
∑ ln 𝜏𝑞
𝑁
𝑞=1 , 𝜎𝑘

2 =
1

𝑁
∑ (ln 𝜏𝑞 −

1

𝑁
∑ ln 𝜏𝑞
𝑁
𝑞=1 )

2
𝑁
𝑞=1 , 𝜷𝑘 = 0 

 

b. Fixed activity: working 
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Table 5. BIC and LR with latent classes number 
Number 

of classes 

Number of 

Parameters 
Log-likelihood ln(𝐿) BIC 

LR  

(LR-val / p-val (df)) 

1 5 -18973.5117 37962.8319 4046.5781/ 0 (2) 

2 10 -17586.0957 35251.2531 6797.3008 / 0 (10) 

3 15 -17469.0371 35056.6669 6919.1914 / 0 (15) 

4 20 -17285.6230 34729.3696 7024.5898 / 0 (20) 

5 25 -17259.5254 34716.7052 7470.7734 / 0 (25) 

6 30 -17284.9824 34807.1502 7423.2188 / 0 (30) 

8 40 -17287.2480 34890.7433 7415.6523 / 0 (40) 

10 50 -17285.5410 34966.3909 7414.4844 / 0 (50) 

 

c. Travel links 

 

Table 6. BIC and LR with latent classes number  
Number 

of classes 

Number of 

Parameters 
Log-likelihood ln(𝐿) BIC 

LR  

(LR-val / p-val (df)) 

1 3 -6882.1519 13771.6471 0. / 1.0 (1) 

2 6 -6877.2329 13813.2132 9.7520 / 0.2828 (6) 

3 9 -6875.3398 13838.8008 13.7549 / 0.3166 (9) 

4 12 -6875.2188 13867.9323 13.6055 /  0.6281 (12) 

5 15 -6875.0942 13897.0570 14.3369 / 0.8130 (15) 

8 24 -6874.9126 13984.8148 14.4785 / 0.9966 (24) 

10 30 -6874.9165 14043.5701 14.6758 / 0.9999 (30) 
𝑃: number of 𝜷𝑘 + number of 𝜆𝑘 

LR test: The null hypothesis:  𝜆𝑘 =
𝑁

∑ 𝜏𝑞
𝑁
𝑞=1

, 𝜷𝑘 = 0 

 


