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Short summary

Coordinated charging of electric vehicles (EVs) has the potential to provide significant benefits to
both electric vehicle owners and the wider community. In fact, intelligent, coordinated charging
of large electric fleets, such as the ones operated by ride-hailing companies, could be essential in
preventing a collapse of the energy market. We study a scenario in which a central body, e.g.,
the power-providing company or the government, wants to influence how the EVs of different
ride-hailing companies spread among different charging stations by offering discounted prices of
charging. Compared to previous works in this domain, we investigate a Stackelberg-based mecha-
nism that takes into account potentially limited discount budgets available to the companies. We
propose an iterative method to compute the local Stackelberg equilibrium that guarantees fairness
in the sense that we have equal prices of charging for all ride-hailing companies. Finally, we test
the proposed method in a simulated case study based on taxi data from the city of Shenzhen.
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1 Introduction

The increased popularity of electric vehicles (EV) and the steep incline in their number Interna-
tiona Energy Agency (2021) opened a significant amount of questions in the domain of electric
energy management and electric mobility. On one hand, this widespread adoption of electric vehi-
cles has led to a growing need for efficient and reliable charging infrastructure. Combining this with
the increasing demand for electricity from EV charging puts the spotlight on the problem of effi-
cient, coordinated charging. On the other hand, combining smart mobility systems and intelligent
charging management could pave the way for gaining an opportunity to trade different services to
achieve societal optimum, e.g., by providing discounted charging in off-peak hours, it could help
improve the stability of the electricity grid by reducing the variability in demand. Moreover, given
that ride-hailing companies now constitute the central part of the services offered within a city, it
is to be expected that they also electrify their fleets. Hence, the impact of coordinated charging
of a large number of vehicles operated by ride-hailing companies can be significant in preventing
the collapse of the energy market. Ride-hailing companies already offer access to different service
facilities to their drivers so it is not unlikely that they would also offer discounted charging in
accordance with the received monetary subsidies aimed at incentivizing the drivers to follow the
management’s desires. That way, the companies, in collaboration with external financiers, could
hope to improve the overall utilization rate of their fleets by increasing the availability of the ve-
hicles or to motivate the drivers to charge in distant areas in an attempt to increase the coverage.

With this in mind, we study a scenario in which a central body, e.g., the power-providing company
or the government, has a desire about how the vehicles should spread out among different charging
stations in a region where the operators of several ride-hailing companies try to minimize their
operational costs, depicted in Figure 1. We assume the charging infrastructure is shared, so the
ride-hailing companies are inherently interested in directing their vehicles to different charging
stations so as to minimize the queuing time at the stations. Moreover, we assume the central
authority has the power to set the prices of charging at different stations and hence, tries to
influence how the companies behave in an attempt to attain a personal objective. Since all the
agents in the system compete for the resources, this opens the door for a game-theoretic analysis.
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There is extensive literature on game theoretic models based on congestion, mean-field, Stackelberg
and Inverse Stackelberg games used to solve different problems in the domain of smart mobility
systems Basar & Srikant (2002); Brown & Marden (2020); Groot et al. (2012); Laha et al. (2019);
Ma et al. (2013); Paccagnan et al. (2016, 2019); Stan̆ková et al. (2011); Tushar et al. (2012);
J. Zhang et al. (2018); L. Zhang et al. (2019). This paper, in particular, is a continuation of our
previous works Maljkovic et al. (2022a,b), where we analyzed a game-theoretic model of a similar
structure as the ones listed in the literature. We did so, however, from the perspective of designing
demand-based, feedback pricing policies that guaranteed the exact minimization of the central
authority’s objective, making our work fall in the category of Inverse Stackleberg games. With
this work, however, we aim to address the problem of potentially unfair prices induced by the
optimal charging policies proposed in Maljkovic et al. (2022a). Namely, we study a Stackelberg
game setup that assumes a game with limited budgets is played between the central authority
and the ride-hailing companies. Based on Maljkovic et al. (2023), we propose an iterative method
to compute a fixed discount for the ride-hailing companies that aligns well with the individual
discount budget constraints. That way, we provide complete fairness in the sense of having the
same prices for every company at the expense of being able to guarantee convergence only to the
local Stackelberg equilibrium of the game. At the end, we test the proposed method in a simulated
case study based on real taxi data from the city of Shenzhen in China.

The paper is outlined as follows: the rest of this section is devoted to introducing some basic
notation. In Section 2, we revise the structure of the model with limited budgets and introduce
the iterative method for computing the local Stackelberg equilibrium. In the following section,
Section 3, we demonstrate the effectiveness of the proposed method in a simulated case study
based on the city of Shenzhen. The final section contains the concluding remarks and some ideas
for future research.

Notation

Let R denote the set of real numbers, R+ the set of non-negative reals, and Z+ the set of non-
negative integers. Let 0m and 1m denote the all zero and all one vectors of length m respectively,
and Im the identity matrix of size m ×m. For a finite set A, we let RA

(+) denote the set of (non-
negative) real vectors indexed by the elements of A and |A| the cardinality of A. Furthermore,
for finite sets A, B and a set of |B| vectors xi ∈ RA

(+), we define x := col
(
(xi)i∈B

)
∈ R|A||B| to be

their concatenation. For A ∈ Rn×n, A ≻ 0(⪰ 0) is equivalent to xTAx > 0(≥ 0) for all x ∈ Rn×n.
We let A⊗B denote the Kronecker product between two matrices and for a vector x ∈ Rn, we let
Diag(x) ∈ Rn×n denote a diagonal matrix whose elements on the diagonal correspond to vector
x. For a differentiable function f(x) : Rn → Rm, we let Dxf ∈ Rm×n denote the Jacobian matrix
of f defined as (Dxf)ij := ∂fi

∂xj
. Finally, for a set-valued mapping F : Rn ⇒ Rm, gph(F) :=

{(y, x) ∈ Rn × Rm | x ∈ F(y)} denotes its graph.

2 Methodology

Model

We begin explaining the proposed methodology by introducing the system model. Let us consider
a region where multiple shared charging stations are available for the EV drivers, i.e., let M be the
set of all charging stations such that |M| = m and Mj > 0 denotes the capacity of the charging
station j ∈ M. Let the set of all ride-hailing companies be denoted as I. Let the cardinality
of the set of companies be |I| = N and for every i ∈ I, let the number Ni > 0 represent the
number of vehicles that want to recharge. For every company i ∈ I, let the vector xi ∈ Xi ⊆ Rm

describe the ride-hailing fleet split among charging stations. Namely, let
∥∥xi

∥∥
1
= Ni and xi

j ≥ 0
denote the number of vehicles to be directed to station j ∈ M. Moreover, if we define the sets
X :=

∏
i∈I Xi and X−i :=

∏
j∈I\i Xj , then the joint strategy of all followers can be denoted as

x := col
(
(xi)i∈I

)
∈ X and for every agent i ∈ I we can define x−i := col

(
(xj)j∈I\i

)
∈ X−i.

Let the nominal prices of charging at different stations be encoded in vector πbase ∈ RM . Further-
more, let us assume that the central authority is interested in determining the optimal discount
∆π ∈ RM , such that for every i ∈ I, the total monetary discount that the company i receives does
not exceed a predefined value Bi ∈ R. Here, Bi represents the limited discount budget of company
i, which corresponds to the level of external subsidies that the company is entitled to.
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Figure 1: Ride-hailing market in a region with 4 charging stations - M =
{M1,M2,M3,M4} and the network topology used in the case study consists of 1858
intersections connected by 2013 road segments, divided in 4 regions based on the Voronoi
partitioning of the city with the centroids located at the charging stations.

Similar to the cost models introduced in Maljkovic et al. (2022a,b), we assume that based on the
announced pricing policy π ∈ P ⊆ RM , such that π := πbase − ∆π, the ride-hailing companies
choose their strategies in an attempt to minimize personal objective functions J i(xi, x−i, π) by
playing the best response to the other agents’ strategies, as illustrated in Figure 2. For every
company i ∈ I, let σ

(
x−i

)
:=

∑
j∈I\i x

j be the aggregate decisions of the other players and let
σ (x) :=

∑
j∈I xj . Then, every company operator is interested in minimizing its operational cost

under the feasibility constraints imposed by the battery status of its vehicles. Inspired by the
objective functions analyzed in Maljkovic et al. (2022a,b); Tushar et al. (2012); Yu et al. (2021);
Zavvos et al. (2022), here, we analyze the operator’s cost that consists of three terms

J i
(
xi, σ

(
x−i

)
, π

)
= J i

1

(
xi, σ

(
x−i

))
+ J i

2

(
xi
)
+ J i

3

(
xi, π

)
,

such that J i
1

(
xi, σ

(
x−i

))
denotes the expected queuing cost, J i

2

(
xi
)

denotes the negative expected
revenue and J i

3

(
xi, π

)
denotes the charging cost.

Expected queuing cost model is governed by the cost term of the form:

J i
1

(
xi, σ(x−i)

)
=

(
xi
)T

Q
(
xi + σ(x−i)−M

)
=

(
xi
)T

Q (σ(x)−M) ,
(1)

where M ∈ RM is the vector of charging station capacities, i.e., M = col((Mj)j∈M), and Q =
Diag (q) ∈ RM×M is a positive definite scaling matrix such that every element qj > 0 depicts how
expensive it is for a vehicle to queue in the region around charging station j ∈ M. The charging
stations located in the city’s more busy areas should experience higher queuing costs and hence
have a higher corresponding diagonal entry in the Q matrix. Moreover, the more the capacity of
the station is exceeded, the higher the cost per vehicle should be, which is directly enabled through
the inner product with the vector σ (x)−M . To take into account the total queuing cost for the
whole fleet, we calculate the inner product between the vector describing the fleet’s distribution,
i.e., xi, and the incurred cost per vehicle for choosing a particular station, i.e., Q (σ(x)−M).

The negative expected revenue is modeled as:

J i
2

(
xi
)
= (earr

i )
T
xi − (epro

i )
T
xi , (2)

where earr
i ∈ RM is the average cost of a vehicle being unoccupied while traveling to a station

and the vector epro
i ∈ RM is the expected profit per vehicle, should the vehicle choose to stay in a

region around a particular charging station, estimated from historical data.

The charging cost is modeled as:

J i
3

(
xi, π

)
= πTSix

i , (3)
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Figure 2: Schematic overview of the interaction between the ride-hailing market and the
central authority, i.e., the power-providing company or the government.

where, the matrix Si ∈ RM×M is diagonal, i.e., Si = Diag
(
di
)
⪰ 0, and every element dik ∈ R+ of

the vector di ∈ RM
+ can be interpreted as the expected average charging demand per vehicle when

choosing the station k. Therefore, the total operational cost of the company can be written in a
general form given by:

J i
(
xi, σ

(
x−i

)
, π

)
=

1

2

(
xi
)T

Pix
i +

(
xi
)T

Qiσ
(
x−i

)
+ rTi x

i + πTSix
i , (4)

where Pi := 2Q, Qi := Q and ri := earr
i − epro

i . Regarding the constraint sets of the ride-hailing
companies, it has been shown that for a particularly constructed polytopic constraint, it will always
be possible to match every ride-hailing vehicle with exactly one charging station in an attempt
to respect the optimal allocation given by the optimal split x∗. For every i ∈ I, the matching
constraints in accordance with Maljkovic et al. (2022a) are given by

Xm
i :=

{
xi ∈ RM | Aix

i = bi ∧Gix
i ≤ hi

}
. (5)

Apart from them, in this paper we also focus on budget constraints. As previously mentioned, for
every company i ∈ I, the total discount budget for the electricity prices that the central authority
can provide is Bi. Taking into account that the discount is given by ∆π = πbase−π, for a particular
pricing strategy π ∈ P, the budget constraint can be described by X b

i (π)

X b
i (π) :=

{
xi ∈ RM | (πbase − π)

T
Six

i −Bi ≤ 0
}

, (6)

which is also a polytopic constraint in xi. Hence, for a pricing strategy π ∈ P and for every i ∈ I,
the resulting constraint set is given by Xi = Xm

i ∩X b
i (π). It is worth mentioning that for particular

choices of parameters Si, πbase and Bi the set X b
i (π) could be empty and, hence, the optimization

problem would be infeasible. Therefore, for future analysis, we assume that X b
i (π) ̸= ∅.

On the other hand, we assume the central authority is interested in balancing the vehicles so as to
minimize the personal objective of the form:

min
σ(x)

JG(σ (x)) = min
σ(x)

1

2
σ (x)

T
AGσ (x) + bTGσ (x) , (7)

for some diagonal matrix AG ≻ 0 and bG ∈ RM . In particular, in this paper, we focus on minimizing
a special case of (7) that corresponds to balancing the vehicles so as to match a predefined vehicle
distribution given by vector Z ∈ [0, 1]

M with 1TZ = 1, i.e., to minimize

JG(σ (x)) =
1

2
∥σ(x)− 1TnZ∥22 , (8)

where n = col
(
(Ni)i∈I

)
is the vector containing the number of vehicles per company that need to be

recharged. Having defined the system model, we continue to present the theoretical preliminaries.
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Theoretical preliminaries

The central authority and the ride-hailing companies admit a single-leader, multiple-follower Stack-
elberg game with the leader being the central authority. Upon the announcement of the leader’s
strategy, the aggregative game between the ride-hailing companies is described by

G0 (π) :=

{
min
xi∈Xi

J i
(
xi, σ

(
x−i

)
, π

)
,∀i ∈ I

}
, (9)

whose Nash equilibrium x∗ is given in the definition below:

Definition 1 (Nash equilibrium) For any pricing strategy π ∈ P of the central authority, a
joint strategy x∗ ∈ X is a Nash equilibrium of the game G0, if for all i ∈ I and all xi ∈ Xi holds

J i
(
xi∗, x−i∗, π

)
≤ J i

(
xi, x−i∗, π

)
.

We focus our attention on the subset of general Nash equilibria given by Definition 1, called
the Variational Nash equilibria (v-NE), because different methods in the literature facilitate their
decentralized computation Grammatico et al. (2016). Based on the theory of variational inequali-
ties Harker & Pang (1990), if we define a map F : X × P → RNM as

F (x, π) := col
((

∇xiJ i
(
xi, x−i, π

))
i∈I

)
,

then the set of v-NE of the game G0 (π) is given by V0 (π):

V0 (π) :=
{
x ∈ X | (y − x)

T
F (x, π) ≥ 0, ∀y ∈ X

}
.

With this in mind, we now proceed to state the existence and uniqueness result for G0 (π).

Proposition 1 For any π ∈ P, let the game G0 (π) between the ride-hailing companies be defined
as in (9). Moreover, for every company i ∈ I, let the constraint sets Xi be defined as Xi =
Xm

i ∩X b
i (π), with Xm

i defined in (5) and X b
i (π) defined in (6). If the company operator’s objective

is defined by (1), (2), (3) and (4), then the game G0 (π) admits a unique v-NE joint strategy x∗ ∈ X .

Proof Since Pi ≻ 0 for every i ∈ I, the agents’ cost functions are convex in xi. For Xi defined
as Xi = Xm

i ∩ X b
i (π), with Xm

i as in (5) and X b
i (π) as in (6), based on (Rosen, 1965, T.1), there

exists a Nash equilibrium of the game G0 (π). A sufficient condition for the uniqueness of the Nash
equilibrium is that the operator F (x, π) be strictly monotone in x (Facchinei & Pang, 2007, Ch.2).
The pseudo gradient can be written as F (x, π) = F1x+ F2, such that F1 = IN ⊗Q+ 1N1T

N ⊗Q
and F2 = col

(
(ri + Siπ)i∈I

)
. To show that F (x, π) is strictly monotone, it suffices to prove that

F1 ≻ 0 Bauschke & Combettes (2017). This is true as for any x ∈ X , it holds that xTF1x =∑
i∈I

(
xi
)T

Qxi +
(∑

i∈I xi
)T

Q
(∑

i∈I xi
)
> 0.

Since the unique v-NE can be computed using the Picard-Banach fixed point iteration Berinde
(2004), we can now formally define the Stackelberg game played between the central authority and
the ride-hailing market. Moreover, we can introduce the notion of the local Stackelerg equilibrium
(l-SE) that we wish to compute for this hierarchical game structure.

Definition 2 (Stackelberg game) Let the game between the ride-hailing companies be defined
as in Proposition 1 and the central authority’s objective be defined as (8). Then the Stackelberg
game is defined by a bi-level optimization problem

GL :=

{
min
π∈P

JL (x∗, π) =
1

2

∥∥σ (x∗)− 1TnZ
∥∥2
2

s.t. x∗ ∈ V0 (π)

}
. (10)

In general, there could exist multiple Srtackelberg equilibria that solve the game given by (10).
Therefore, we shift our focus towards computing the local Stackleberg equilibria given by the
following definition and previously analyzed in Fabiani et al. (2022).

Definition 3 (Local Stackelberg equilibrium) Let GL be a game as in Definition 2. A pair
(x̂∗, π̂) ∈ gph (V0)∩(X × P) is a local Stackelberg equilibrium of GL if there exist open neighborhoods
Ωx̂∗ , Ωπ̂ of x̂∗ and π̂ respectively, such that

JL (x̂∗, π̂) ≤ inf
(x∗,π)∈gph(V0)∩Ω

JL (x∗, π) ,

where Ω := Ωx̂∗ × (P ∩ Ωπ̂).

In the following section, we will present a bi-level, iterative method for computing the local Stack-
elberg equilibria.
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Figure 3: Overview of the three-step iterative procedure used for calculating the local
Stackelberg equilibrium.

Computing the l-SE

To compute the local Stackelberg equilibria, we build on top of the standard iterative structure
used for finding the v-NE of the aggregative game played between the ride-hailing companies. As
previously mentioned, based on Proposition 1, we can utilize the Picard-Banach iteration to find
the v-NE of G0(π) for a particular π ∈ P. Based on the aggregative structure of the operator’s cost,
standard methods leverage the entity typically referred to as the ’central aggregator’ to transmit
the information about σ(x) to all the agents in the game during the procedure.

To compute the l-SE, we will perform a gradient-based, iterative procedure that requires communi-
cation just between the ’central aggreagator’ and the central authority. Namely, we aim to update
the central authority’s pricing strategy according to

πt+1 (πt, s) := ΠP

[
πt − s

dJL (x∗ (π) , π)

dπ

∣∣∣∣
π=πt

]
, (11)

where Π denotes the projection operator, πt is the current value of the central authority’s pricing
policy and s is the step size carefully determined according to the Armijo step-size rule Bertsekas
(1999). If we restrict ourselves to compact and convex pricing spaces P ⊆ RM , then the complexity
of each update step defined by (11) boils down to estimating how the Nash equilibrium of G0(π)
reacts to any change in π, i.e., calculating the gradient

dJL (·)
dπ

=
∂JL (·)
∂π

+
∑
i∈I

DT
πx

i∗ ∂J
L (·)

∂xi∗ . (12)

Here, it is of paramount importance to show that the Jacobians DT
πx

i∗ are well defined. To do so,
we take into account that the unique v-NE, x∗ ∈ X , pre-computed for the current value of πt, has
to satisfy the KKT optimality conditions of the best-response optimization problem given by (9)
for each ride-hailing company. For every i ∈ I, let us describe the constraint set Xi := Xi(π) as

Xi(π) =

{
xi ∈ RM |

[
Gi

(πbase − π)Si

]
xi ≤

[
hi

Bi

]}
=

{
xi ∈ RM | Γix

i ≤ δi
}
. (13)

Moreover, let us partition Γi and δi into active and inactive inequality constraints described by Γi,
Γi, δi and δi such that

Γix
i∗ = δi and Γix

i∗ < δi . (14)

Then, applying the Implict Function theorem Dontchev & Rockafellar (2009) to the KKT mapping
of an equivalent best-response optimization problem with partitioned constraints described by (14),
directly yields

Dπx
i∗ = −

 ∂2

∂xi∂xi
J i Γi

T Āi
T

0 Diag
(
Γix

i∗ − δi
)

0
Āi 0 0

−1  Si

0
0

 , (15)

where Ai is full row-rank and obtained by removing redundant constraints from AT
total =

[
AT

i ,Γ
T

i

]
.

The schematic representation of the three-step procedure is presented in Figure 3. Finally, we can
summarize the convergence results in the following proposition.
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Proposition 2 Let the Stackelberg game between the central authority and the ride-hailing compa-
nies be defined as (10). Moreover, let the update step of the central authority’s pricing strategy be
defined by equations (11), (12), (13) and (15) and the step size s > 0 in (11) be chosen according
to Armijo step-size rule. Then, for P compact and convex, the following convergence result holds:

lim
t→+∞

[
JL (·, πt+1)− JL (·, πt)

]
= 0 ,

Proof The proof follows directly from applying the Implicit function theorem Dontchev &
Rockafellar (2009) and applying the properties of the Armijo step-size rule Bertsekas (1999).

In the following section we illustrate the performance of our algorithm in a simulated case study
based on taxi data from the city of Shenzhen.

3 Results and discussion

Case study

We begin this section by introducing the case study that was previously analyzed in Maljkovic
et al. (2022a). We consider 3 ride-hailing companies I = {I1, I2, I3} with fleet sizes given
by Nfleet = [450, 400, 350]

T that operate in the Shenzhen region with 4 public charging sta-
tions M = {M1,M2,M3,M4}. The stations are described by the vector of their capacities
M = [15, 60, 35, 50]

T and are located in parts of Shenzhen with different demands for ride-hailing
services as shown in the color-coded map depicted in Figure 1. We consider a 3 hour long simula-
tion that represents one of the two peak-hour periods during the day. New passengers constantly
arrive in the system and either increase the number of private vehicles in the system or request a
ride-hailing vehicle to be assigned to them. The demand profile represents the real taxi demand
that we assume is now served by the ride-hailing companies Beojone & Geroliminis (2021). The
congested conditions in the city are represented by modeling the space mean speed of the vehicles
as a decreasing function of the total vehicle accumulation nv in the region and according to the
network Macroscopic Fundamental Diagram (MFD) Geroliminis & Daganzo (2008) obtained from
Ji et al. (2014). Under the assumption of homogeneous congestion in the city, the MFD of the
region is given by:

vspace(nv) =


36 exp

(
− 29nv

60000

)
, if nv

1000 ≤ 36

6.31− 0.28
(

nv
1000 − 36

)
, if 36 < nv

1000 ≤ 60

0, if nv
1000 > 60

.

To prevent the ride-hailing vehicles from flocking in the busiest parts of the city, the desired
distribution of the ride-hailing vehicles Z is formed so as to match the spatial distribution of the
ride-hailing service requests. To approximate this distribution, the city region is divided into 4 cells
according to the Voronoi Kang (2008) partitioning of the map. The charging stations are chosen
as the centroids of the Voronoi cells, the number of vehicles per company that want to recharge
after a 3 hour simulation is given by n = [194, 181, 157], and Z is chosen to correspond to the total
number of requests in each cell. For the analyzed case study, this results in obtaining Z such that
1TnZ = [198, 103, 144, 87] and we set P := [pmin, pmax]

4, such that pmin = 0.0 and pmax = 5.0. All
the remaining parameters in the simulation are kept identical as in Maljkovic et al. (2022a).

System performance

For the Picard-Banach fixed point iteration procedure used to compute the v-NE before each update
step of the central authority’s pricing strategy, we used kv-NE = 5000 iterations whereas for the
iterative procedure between the central authority and the ’central aggregator’ we used kl-SE = 350
iterations. The evolution of the achieved total vehicle accumulations and the central authority’s
objective are shown in Figure 4. For the given number of iterations, the system manages to achieve
perfect matching with respect to desired vehicle distribution.

This is further supported by the plot on the right-hand side of Figure 4, which shows that the
objective function converges to the global minimum value of 0. Finally, we can investigate the trend
in the evolution of the actual discount budget used for each of the ride-hailing companies by looking
at Figure 5. The evolution of the discount budget used is presented for the base price of πbase =

7



0 100 200 300

100

150

200

Iteration

σ
(x
)

σ1 (x)

σ2 (x)

σ3 (x)

σ4 (x)

0 100 200 300
0

1

2

3

4

Iteration

J
L
(x

∗ (
π
),
π
)
×
1
0−

3

Figure 4: The left plot shows the evolution of the total vehicle accumulation σ(x), whereas
the right plot shows the evolution of the central authority’s objective during the procedure.
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Figure 5: The three plots show the evolution of the value of the used discount budget.
The black lines represent the achieved values whereas the red line represents the maximum
possible value of the discount budget.

[5.0, 3.0, 5.0, 3.0] and the attained charging discount is given by ∆π = [1.560, 0.809, 2.179, 1.440].
Note that in this case, the system was able to recover a solution that matches the global minimum
of the central authority’s objective. However, achieving such a local Stackelberg equilibrium is not
always necessarily possible. In fact, for some cases, it could be that the chosen initial value of the
pricing policy πinit largely determines which discount policy the algorithm converges to. Therefore,
we plan to investigate in the future how different initial values of the pricing policy influence the
result of the iterative procedure.

4 Conclusions

In this paper, we presented an iterative framework for computing a pricing strategy corresponding
to a local Stackelberg equilibrium in a pricing game with one leader, i.e., the central authority and
multiple followers, i.e., the ride-hailing companies, where the ride-hailing companies are constrained
by fixed, a priori defined, discount budgets. We provided theoretical convergence guarantees and
demonstrated the performance of the system in a simulated case study based on taxi data from
the city of Shenzhen. However, what remains a promising research direction for the future is the
question of how to choose the initial conditions in order to converge to a global optimum of the
central authority’s objective whenever such an optimum exists. Moreover, we aim to increase the
complexity of the model in an attempt to better describe the reality.
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