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SHORT SUMMARY

Ride-hailing vehicles contribute to traffic congestion in urban areas, where spatial con-
straints and uneven multi-modal distribution of infrastructure are a constant problem. In
fact, roaming empty vehicles cause additional delays to other concurrent network users
without delivering passengers to their destinations. Ride-splitting is one potential solu-
tion to counteract the negative impact of ride-hailing on traffic. In this work, we provide a
dynamic non-equilibrium modelling framework for ride-splitting, where pool passengers
are allowed to use dedicated bus lanes and can potentially travel faster than solo users.
The objective is to develop a ride-splitting pricing policy between solo and pool options
to encourage trip sharing with the goal of minimizing overall delays in multi-modal net-
works with bus lanes. Therefore, a Model Predictive Control (MPC) framework is set
forward to investigate the price difference between the two ride-hailing alternatives with
the objective of reconsidering the space allocation between the available modes. The re-
sults show that the proposed strategy is able to adjust the time-dependent fare changes
based on the multi-modal demand and speeds in different parts of the network.

Keywords: Model predictive control, multi-modal networks, network delays, public transporta-
tion, regulations, ride-splitting services, space allocation.

1. INTRODUCTION

Ride-hailing has quickly established itself as a transportation alternative in its own because of the
myriad of benefits it brings. It is a flexible and affordable door-to-door service with relatively low
wait times compared to public transit. Despite its advantages, the impact of ride-hailing services
on multi-modal demand distribution and traffic congestion is significant at multiple levels. Ride-
splitting has the potential to mitigate these impacts by reducing the number of drivers required to
achieve the same level of service (Ma, Zheng, & Wolfson, 2015), and cutting down the number
of Vehicle Kilometer Travelled (VKT) to serve the same level of demand (Ke, Zheng, Yang, &
Ye, 2021). However, the critical mass for pooling is rarely fulfilled, and this is due to the longer
travel time that this option entails. The need to regulate ride-hailing services is therefore becoming
more substantiated, and much work in this area has examined the efficiency of setting a cap on
the fleet size or the maximum empty VKT allowed to be travelled by ride-hailing drivers (Yu,
Tang, Max Shen, & Chen, 2020; Schaller, 2018). Other lines of research address the gains from
sending empty ride-hailing vehicles to available parking spaces in urban areas in dynamic non-
equilibrium settings (Beojone & Geroliminis, 2021), or in static equilibrium frameworks (Li, Qin,
Yang, Poolla, & Varaiya, 2020; Xu, Yin, & Zha, 2017). The commonality among these proposed
solutions is that they all fall into an enforcement-based regulatory approach. In a previous paper,
Fayed, Nilsson, and Geroliminis (2023) demonstrated the potential of an incentive-based policy to
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reduce the impact of ride-hailing on traffic congestion. By proposing an occupancy-based spatial
assignment policy in a multi-modal network with dedicated bus lanes, we showed that it is possible
to mitigate the impact of ride-hailing by encouraging users to share their trips. By giving pool
drivers the right to utilize the bus lanes, the number of vehicles in the mixed traffic portion of
the network is reduced. A similar modal-dependent allocation strategy is used for Autonomous
Vehicles (AV) in Lamotte, de Palma, and Geroliminis (2017), or for buses in Geroliminis and
Daganzo (2008); Geroliminis, Zheng, and Ampountolas (2014). Nevertheless, a very high number
of pool vehicles in bus lanes deteriorates network conditions by causing significant delays for bus
users. A pricing strategy is hence needed to encourage pooling when bus lane capacity allows it,
and to deter pooling when bus delays are significant. Therefore, the main contribution of this work
is to develop an aggregate multi-modal dynamic model that incorporates the proposed allocation
policy. This model serves as a basis for establishing a control pricing scheme between the two
ride-hailing alternatives in an attempt to contain overall network delays.

2. METHODOLOGY

The following section deals with the dynamic macroscopic modelling of multi-modal networks
with bus lanes. Within this scope, we assume that private vehicles and solo ride-hailing users
travel in the vehicle network, while buses and pool ride-hailing users travel in the bus network.
We begin first by characterizing the aggregate traffic model that we use to determine speeds in
both networks. We then use this model to describe the dynamics of private and ride-splitting
vehicles, and bus passengers. Finally, we introduce the MPC scheme with the goal of determining
the pricing gap between the solo and pool alternatives that minimizes multi-modal user delays.
The full list of notations used in this paper is displayed in Table 1.

Network model

In the network under consideration, travellers perform their trips by one of the set of available
modes M: private vehicles pv, ride-splitting rs, or buses b, so that M := {pv,b,rs}. Therefore,
the exogenous and time-dependent hourly demand for each mode is given by Q j(k) for j ∈ M
where k is the time-step such that k ∈ K := {0, ...,kmax}. Moreover, we assume that the time
interval between two consecutive time-steps is equal to ∆. Ride-hailing users choose either a solo
trip s in the vehicle network V or a pool trip p in the bus network B. The fraction of infrastructure
allocated to the vehicle network V is denoted by α where α ∈ [0,1]. It can be inferred that buses
and pool users are allocated a space equal to 1−α of the total available network infrastructure. The
ride-splitting fleet N is constant, and drivers belong exclusively to one of the following categories
at each time-step:

i) idling or dispatching with no passengers inside the vehicle that we denote by ne,

ii) performing a solo trip in the vehicle network V which we denote by ns, and

iii) performing a pool trip in the bus network B which we denote by np.

In addition to the ride-splitting fleet, we denote the number of private vehicles in network V at
time-step k ∈ K by npv(k), and the number of buses in the bus network B by nb. Note that
the number of buses is assumed to be constant, but the bus occupancy ob is time-dependent.
Accordingly, the total accumulation in the vehicle network nV at time-step k ∈ K is nV(k) =
npv(k)+ ne(k)+ ns(k) where the idle ride-hailing vehicles travel exclusively in the vehicle net-
work. Similarly, the accumulation in the bus network nB at time-step k ∈K is nB(k) = np(k)+nb.
The fleet size N of ride-hailing vehicles is constant and provided by the platform operator such
that N = ne(k)+ns(k)+np(k) for all k ∈ K.
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Table 1: Notations

Variable name Description
M Set of transportation modes where M= {pv,rs,b}
n(k) Total vehicle accumulation at time-step k
P(n(k)) Total production in the network at time-step k
v(k) Network speed at time-step k
α Fraction of space allocated to V
nV(k), nB(k) Accumulation in V and B respectively at time-step k
N Ride-hailing fleet size
npv, ne(k), ns(k), np(k) Number of private, idle, solo and pool ride-hailing vehicles respectively at time-step k
nb Number of buses in the bus network
PV(nV(k)), PB(nB(k)) Production in V and B respectively at time-step k
Pp
(
np(k),nb

)
Production of pool vehicles in B at time-step k

Pb
(
np(k),nb

)
Production of buses in B at time-step k

vV
(
nV(k)

)
, vB
(
nB(k)

)
Speed in V and B respectively at time-step k

vp
(
np(k),nb

)
Speed of pool vehicles at time-step k

vb
(
np(k),nb

)
Speed of buses at time-step k

Qi(k) Demand for mode i ∈M at time-step k
c(k) Number of ride-hailing customers waiting to be assigned at time-step k
β (k) Fraction of ride-hailing requests opting for solo trips at time-step k
cs(k), cp(k) Number of ride-hailing customers opting for a solo and a pooled trip respectively at time-step k
us(k), up(k) Travel time cost for solo and pooled respectively expressed in monetary terms at time-step k
Us(k), Up(k) Total cost for a solo and pooled respectively at time-step k
F̃s(k), F̃p(k) Dynamic fare for pooled and solo trips at time-step k
Fs, Fp Ride-hailing basic fare for solo and pooled trips at time-step k
N Ride-hailing fleet size
ob(k) Actual occupancy per bus at time-step k
ōpv, ōp Average private and pool vehicles occupancy respectively
v̄b Target speed for buses
l̄pv, l̄s, l̄b Average private vehicle, solo, and bus trip lengths respectively
∆ld , ∆lp Driver and passenger pooled trip detour distance
∆ Length of simulation time-step
M(k) Matching rate at time-step k
µ Mode choice scale parameter
κ Value of time
a0, αe, αc Meeting function parameters
t̄d Bus dwell time at stops
s̄ Average spacing between bus stops
wmax Maximum passenger waiting time
ξ (k) Control variable integrated in discrete mode choice at time-step k
φ(k) Additional controlled fee or discount that pooled vehicle incur at time-step k
A(k) Ride-splitting request abandonment at time-step k
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Traffic dynamics

In the following section, we address the macroscopic traffic dynamics that allow us to specify the
relationships between demand and accumulation for each mode. Thus, let P :R≥0 →R≥0 be the
total network production, n its accumulation, and v its speed, then we know that for all time-steps,
the relation P(n(k)) = n(k)v(n(k)) holds, where ∂v

∂n ≤ 0. If the entire network space is partitioned
into a vehicle and bus network according to the fractional split α , then the production functions
in the vehicle network PV and bus network PB satisfy the conditions αP(n(k)) = PV(αn(k)) and
ᾱP(n(k)) = PB(ᾱn(k)) respectively where ᾱ = 1−α (Ni & Cassidy, 2019; Sirmatel, Tsitsokas,
Kouvelas, & Geroliminis, 2021). Similarly, the speed in the vehicle network vV and in the bus
network vB are given by v

(
n(k)

)
= vV

(
αn(k)

)
and v

(
n(k)

)
= vB

(
ᾱn(k)

)
respectively. Rewriting

the production functions in terms of speeds, we obtain that PV(nV(k)) = nV(k)vV
(
nV(k)

)
and

PB(nB(k)) = nB(k)vB
(
nB(k)

)
.

To account for the fact that the marginal effects on the speed of buses and pool vehicles are not
equivalent, we divide the bus network production into pool vehicle production Pb and a bus produc-
tion Pb. This is because buses, unlike pool vehicles, frequently stop at stations to allow passengers
to board and disembark. We capture this recurrent action by reducing the speed in the bus network
vB by a factor r(nb) where r : R≥0 → (0,1] and dr

dnb
< 0. Consequently, the running speed of the

pool vehicles in the bus network is vp
(
np(k),nb

)
= vB

(
nB(k)

)
r(nb). Taking into account the time

that buses spend boarding and alighting passengers, the operational bus speed is

vb
(
np(k),nb

)
=

(
1

1+ vp
(
np(k),nb

) td
s̄

)
vp
(
np(k),nb

)
, (1)

where t̄d and s̄ are the average time of buses and the spacing between stops, respectively. There-
fore, after defining the individual pool vehicles and bus speeds, the production functions become
Pp
(
np(k),nb

)
= np(k)vp

(
np(k),nb

)
and Pb

(
np(k),nb

)
= nb(k)vb

(
np(k),nb

)
respectively for all

k ∈ K.

Private vehicles dynamics

According to the modal-dependent spatial allocation policy proposed in this framework, private
vehicles utilize the vehicle network V . The change in the accumulation of private vehicles between
any two successive time-steps is given by the difference between the exogenous arrival of private
vehicle users Qpv and the completion rate of private vehicle trips Opv. The latter is derived based
on the accumulation nV and the network production function PV such that npv at time-step k is
equal to

npv(k) = npv(k−1)+∆
[

Qpv(k)
ōpv

−Opv(k−1)
]

= npv(k−1)+∆

[
Qpv(k)

ōpv
− npv(k−1)

nV(k−1)
PV
(
nV(k−1)

)

l̄pv

]
, ∀k ∈ K\{0} ,

(2)

where l̄pv is the average trip length of private vehicles and ōpv is their average occupancy. Note that
the accumulation nV itself depends on the number of private vehicles npv, but also on the number
of solo ride-hailing drivers ns.

Ride-splitting dynamics

As highlighted earlier, the total ride-splitting demand in this work is exogenous, but the demand
split between solo and pool trips is the result of user choice, and is determined endogenously using
the total travel cost for each alternative. This cost is the sum of two elements: the alternative-
dependent travel fare and the travel time in each network. Accordingly, if Us(k) and Up(k) are the
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disutilities for a solo or pool trip at time-step k ∈ K respectively, then their expressions are given
by

Us(k) = F̃s(k)+κ
l̄s

vV
(
nV(k)

) , (3)

Up(k) = F̃p(k)+κ
l̄s +∆lp

vp
(
np(k),nb

) , (4)

where κ is the value of time, l̄s is the average trip length for a solo trip, and ∆lp is the additional
travel distance that pool users incur to pick up and/or drop off another passenger. The variable
F̃s(k) represents the fare collected from a solo user and F̃p(k) represents the fare collected from a
pool user at time-step k. For simplicity, we assume that the solo fare is static such that F̃s(k) = Fs

for all k ∈ K where Fs is the fare set by the platform operator. The pool fare is defined by the
expression F̃p = Fp +φ(k) where Fp is the static pool charges collected by the platform, and φ(k)
is the control fare set by the network regulator to steer the system toward its optimum.

If the choice of ride-hailing users is the outcome of a binary logit choice model, then the fraction
of solo trips that we denote by β is

β (k) =
exp
(
−µUs(k)

)

exp
(
−µUs(k)

)
+ exp

(
−µUp(k)

) , (5)

where µ > 0 is the binary logit scale parameter. Rewriting the disutilities for solo and pool that
we denote by us and up respectively in terms of static fare only, we obtain the following

us(k) = Fs +κ
l̄s

vV
(
nV(k)

) , (6)

up(k) = Fp +κ
l̄s +∆lp

vp
(
np(k),nb

) . (7)

Therefore, the expression for β as function of us and up is

β (k) =
exp
(
−µus(k)

)

exp
(
−µus(k)

)
+ exp(−µφ(k))

ξ (k)

exp
(
−µup(k)

) , (8)

where ξ (k) ∈ (0,+∞) is an auxiliary variable that paves the way for a more pragmatic implemen-
tation of the MPC framework. From the auxiliary variable ξ (k), it is straightforward to derive the
control price φ(k) by using the expression

φ(k) =
log(ξ (k))

−µ
. (9)

Once the choice of users is determined, it is straightforward to divide the waiting passengers into
two categories. If c(k) is the number of requests waiting to be assigned at time k, then the number
of requests that choose to ride solo is cs(k)= β (k)c(k) and those that choose to pool is cp(k)= (1−
β (k))c(k). These passengers are matched to idling vehicles according to the following bilateral
meeting rate M, so that

M(k) = a0ne(k)αe

(
cs(k)+

1
2

cp(k)
)αc

, (10)

where a0 > 0, αe > 0, and αc > 0 are tthe parameters of the Cobb-Douglas meeting function
in (10). Note that a factor 1

2 is added to cp to indicate that pool waiting passengers are assigned to
a single unoccupied vehicle.
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Once all these elements are defined, it becomes possible to determine the dynamics of the ride-
splitting market. We first start with idle vehicles, so that the value of ne at time-step k is given
by

ne(k) = ne(k−1)+∆[Os(k−1)+Op(k−1)−M(k−1)]

= ne(k−1)+∆

[
ns(k−1)
nV(k−1)

PV
(
nV(k−1)

)

l̄s
+

Pp
(
np(k−1),nb

)

l̄s +∆ld
−M(k−1)

]
,∀k ∈ K\{0} ,

(11)

where Os and Op are the completion rates for a solo and a pool trip respectively, l̄s is the average
solo trip length, and ∆ld is the driver detour, i.e., the extra distance that a driver travels to deliver a
pool trip. Note that all drivers who complete their trips become idling again, and thus represent the
inflow for the idling vehicle category. In contrast, the outflow for this specific category consists of
every vehicle that has been matched, which is derived from M(k).

Moving to the solo vehicle category, the number of solo vehicles at every time-step is

ns(k) = ns(k−1)+∆

[
β (k−1)M(k−1)− ns(k−1)

nV(k−1)
PV
(
nV(k−1)

)

l̄s

]
, ∀k ∈ K\{0} . (12)

Since only a fraction β of the total ride-hailing requests choose a solo trip, the inflow for the
solo vehicle category is determined by a portion β of the total matching rate, and the outflow is
computed using vehicle network production PV .

In a similar manner, we calculate the change in the number of pooling vehicles np by taking the
difference between the number of drivers matched to a pool trip and the number of pool drivers
that completed their trips. Thus, the expression of np is given by

np(k) = np(k−1)+∆

[
(
1−β (k−1)

)
M(k−1)− Pp

(
np(k−1),nb

)

l̄s +∆ld

]
, ∀k ∈ K\{0} . (13)

The trip completion rate for the pool vehicle category in computed using the pool vehicle produc-
tion Pp, which itself is a function of the time-dependent number of pool vehicles np and the static
number of buses nb.

Finally, the dynamics of waiting passengers remain to be defined. Knowing that the demand for
ride-splitting at time-step k is given by Qrs(k), the number of waiting passengers c(k) is

c(k) = c(k−1)+∆[Qrs(k)+
(
β (k−1)−2

)
M(k−1)]−A(k) , ∀k ∈ K\{0} . (14)

where A(k) is the number of abandoning requests that are not served within reasonable waiting
times. We point out here that the calculation of the passenger outflow takes into account that
each pool trips results in two passengers leaving the queue of waiting requests. The number of
abandonments A(k) is computed as follows

A(k) = max

(
c(k−1)− 1

k−1

k−1

∑̃
k=1

M(k̃−1)wmax,0

)
, (15)

where wmax is a measure of the maximum wait tolerance of ride-hailing requests. This equation
is an approximation of the number of waiting requests when the wait tolerance is set to wmax. It
computes the number of requests that leave the platform due to a poor level of service.
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Demand

Requests - c(k)

Bus passengers - ob(k)

Pooled - np(k)Solo - ns(k)

Idle - ne(k)

Private vehicles - npv(k)

Qb(k)Qrs(k)
Qpv(k)

M(k) β (k)
β (k)M(k)

Opv(k) Ob(k)

Os(k) Op(k)

(
1−β (k)

)
M(k)

Us(k) Up(k)

α

Fleet N

Bus network
vB
(
nB(k)

)Vehicle network
vV
(
nV(k)

)

Figure 1: Modelling framework of the proposed dynamic and modal-dependent
space allocation policy

Bus dynamics

Moving to the bus dynamics, we assume in this framework that the number of buses circulating in
the bus network B is constant. This number is computed using

nb =
Q̄b l̄b
ōbv̄b

, (16)

such that Q̄b is the average expected bus demand per hour, l̄b is the average bus trip length, ōb is the
target bus occupancy, and v̄b is the expected bus operating speed. Assuming that nb remains con-
stant in time, we track the bus dynamics by following the variation of the average bus occupancy
ob, which at time k, is given by

ob(k) = ob(k−1)+∆
1
nb

[
Qb(k)−

Pb
(
np(k−1),nb

)

l̄b
ob(k−1)

]
, ∀k ∈ K\{0} . (17)

We assume in (17) that bus demand Qb(k) is uniformly distributed over the available bus fleet.
The trip completion rate is computed using the bus production function Pb, and is converted to
passenger trips by multiplying the completion rate by the average bus occupancy.

Figure 1 summarizes the full network model including the dynamics that we previously described.

Model predictive control

The modelling framework proposed captures the full impact on the multi-modal commuters when
pool users are allowed to use the bus lanes. In Fayed et al. (2023), it was shown that the overall
network situation deteriorates when the number of pool vehicles in the bus lanes is relatively
high, causing additional delays for buses. Therefore, a pricing scheme is needed to encourage
or discourage ride-hailing users to utilize the bus lanes depending on the speeds in the vehicle
network V and in the bus network B. To provide such a pricing scheme, we integrate the network
dynamics into a MPC framework, and use the latter to determine the fare control variable φ(k)
that minimizes the total Passenger Hour Travelled (PHT) such that PHT at time k is equal to the
sum of the individual PHT of each commuter category in the network

PHT(k) = ∆[npv(k)ōpv +nb(k)ob(k)+ns(k)+np(k)ōp] .
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System outputs

Optimizer
minimize ∑k+Np

i=k PHT(i)

s.t.

{
φ(k) = φ(k−1) ∀k ∈ {1, . . . ,kmax}\{n ·Nu | n ∈N}
φmin ≤ φ ≤ φmax

Model dynamics
with abandonment

Plant

Demand
Qpv,Qrs,Qb

Model dynamics
without abandonment

MPC

φk, ...φk+T

np(k+T ),ns(k+T ),npv(k+T )
ob(k+T ),c(k+T )

Figure 2: MPC framework with distinct plant and MPC dynamics

The variable ōp is the average occupancy of the pool vehicles, where ōp ∈ [1,2]. The objective of
MPC is to solve the following minimization problem

minimize
{φ(k)}k∈K

∑
k∈K

PHT(k)

subject to (1)− (17)

φ(k) = φ(k−1) , ∀k ∈ {1, . . . ,kmax}\{n ·Nu | n ∈N}
φmin < φ(k)< φmax , ∀k ∈ {1, . . . ,kmax}

(18)

where the second constraint in (18) ensures that the control variable is updated only every Nu ∈N
time-steps. The third constraint sets a minimum and maximum range for the control variable.

The minimization framework presented in (18) is straightforward if we disregard abandonment
from (14). Nevertheless, including abandonment in our framework introduces an additional com-
putational complexity since A(k) is calculated based on prior matching rates. To circumvent this,
we adapt the MPC framework according to the approach displayed in Figure 5. In this scope, we
neglect the abandonment in the MPC dynamics and solve the optimization problem to obtain the
values of the control fare for a prediction horizon Np ∈N. However, we extract only the control
variables up to an update horizon, such that T ∈ N and T < Np, and incorporate them into the
actual plant dynamics with abandonment to estimate the new state variables. The state variables
are then fed as inputs to the MPC dynamics and the optimizer is relaunched.

3. RESULTS AND DISCUSSION

In this section, we will numerically show the performance of the proposed control strategy and
quantify the influence of abandonment on the model dynamics. To do so, we consider a network
which production function is given by P(n) = A0n3+B0n2+C0n, such that A0 = 5.74 ·10−9, B0 =
−1.02 ·10−3, and C0 = 36 for n ∈ [0,58536]. Assuming the fraction of the total space allocated to
the vehicle network α is equal to 0.8, it becomes straightforward to derive the production functions
PV and PB. The function capturing the marginal effect of buses on traffic is given by r(nb) such that
r(nb) = e−6.5·10−4nb . This function, in addition to s̄ = 0.8 km and t̄d = 30 s, are used to compute
the bus speed vb.

Next, we list the different constant values used in the modelling framework. The average private
vehicle and solo trip lengths are set to be equal such that l̄pv = l̄s = 3.86 km. The trip length by
bus is generally larger, and therefore l̄b is set to be equal to 1.4l̄pv. The values of the driver and
passenger detour are ∆ld = 0.7l̄s and ∆lp = 0.15l̄s, and the average occupancies for private vehicles
ōpv, pool vehicles ōp, and bus ōb are equal to 1.2, 1.5, and 20 respectively. The average design bus
speed v̄b used to compute the number of buses nb is 18 km/hr The a0, αe, and αc parameters for
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Table 2: PHT for different simulation frameworks with no abandonment

Scenario βββ NNN ppp TTT PHT [pax.km/hr]
Benchmark logit - - 171300
Pool trips only 0 - - 182037
Solo trips only 1 - - 175798
MPC logit 3600 3600 168437
MPC logit 900 450 168729

Table 3: PHT for different simulation frameworks with abandonment

Scenario βββ NNN ppp TTT PHT [pax.km/hr] Abandonment
Benchmark logit - - 170007 8590
Pool trips only 0 - - 177376 20463
Solo trips only 1 - - 174952 21626
MPC logit 3600 3600 167635 10271
MPC logit 900 450 167938 13961

the Cobb-Douglas matching function are 0.025, 0.93, and 0.98 respectively. With respect to the
computation of the mode choice between solo and pool, we set the scale parameter µ = 1 and the
value of time κ = 30 CHF/hr. The constant solo and pool trip fare Fs and Fp are equal to 5 and 4
CHF respectively. The ride-hailing fleet size N is equal to 3500 and the discretized time interval ∆
is equal to 6 s.

The aggregate simulation that we advance spans over a 6-hour period covering the afternoon on-
peak in-between two off-peak periods. The demand profiles for private vehicles, ride-splitting
services, and buses are shown in Figure 3. To start with, we test our controller for a scenario
where abandonment is always set to 0, and we show the results in Table 2. We compare different
simulation settings, including a benchmark scenario with no external intervention and an MPC
framework with different prediction and update horizon settings, with Nu = 180. The same sim-
ulations are then repeated when the plant (but not the dynamics in the MPC) has abandonment
rates as given by (15), and the results are displayed in Table 3. Logically, the values of PHT are
lower for scenarios with abandonment mainly because the travel time of abandoning requests is
not accounted for in the computation of PHT. Moreover, irrespective of the abandonment settings,
the MPC with a full prediction horizon returns the lowest PHT, and decreasing the prediction hori-
zon slightly deteriorates the results. Finally, for instances with abandonment, even if the MPC
framework reduces delays, the increase in abandonment relative to the benchmark scenario does
not allow a fair comparison basis. Therefore, designing an MPC that accommodates abandonment
in its dynamic framework is a research area that we plan to investigate in the future.

Lastly, we plot the variations of the main model variables for the benchmark scenario with no
abandonment in Figure 4, and for the MPC framework with abandonment and a prediction horizon
of 900 in Figure 5. Compared to a scenario with no control, i.e.,φ(k) = 0 for all k ∈ K, the MPC
imposes high charges for pooling to prevent the deterioration of the conditions in bus lanes, and
to improve the overall network situation. During on-peak periods however, we observe that the
charges decrease, and the control variable φ assumes negative values to further encourage pooling
as the speed in the vehicle network vV drops significantly. The aim in these particular time spots
is to alleviate congestion in the vehicle network.
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Figure 3: Demand profiles for Qpv, Qrs and Qb

4. CONCLUSIONS

In this work, we designed a dynamic space and occupancy-dependent allocation policy for multi-
modal networks with ride-splitting services. We then build upon this model to construct a pricing
control strategy that encourages or discourages pooling in bus lanes according to the overall user
delays. Using an MPC framework, we solve the minimization problem, and determine what is
the additional fare or discount that ride-splitting users should incur to improve the total network
situation. By comparing many different scenarios, we demonstrate that our control scheme is in-
deed capable of reducing total Passenger Hour Travelled in scenarios with or without ride-hailing
request abandonment. Future research direction however will focus on a more reasonable integra-
tion of abandoning requests within the MPC framework through reintroducing them to the system
as bus or private vehicle users.
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