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SHORT SUMMARY

The customized bus system is an innovative demand-responsive public transit service with the
potential to significantly alleviate congestion and environmental footprint. To fully exploit the
flexibility of this approach, it is pivotal to forecast the demand for the service, in order to optimize
the use of vehicles and resources. In this paper, with the aim for supporting the use of customized
bus systems, we formalize the predictive task and assess the performance of a range of machine
learning techniques. We introduce a two-step predictive task aiming at (i) identifying the presence
of demand and, if there is actual demand, (ii) estimating the number of passengers to be served.
The experimental analysis, based on realistic data from the Beijing area, shed some light into the
performance of different classes of approaches.
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1 INTRODUCTION

The customized Bus (CB) system is an innovative and extremely flexible public transit (PT) service
with the benefits of congestion alleviation and environmental friendliness (Shu & Li, [2022), that is
emerging as an alternative to conventional buses and private cars. CB is a class of demand-oriented
transit that holds the promise to provide "door-to-door" service to passengers with similar travel
requirements in both space and time (Liu & Ceder} [2015)).

The vast majority of existing work on CB systems assumes that travel demands are collected in
advance from dedicated online booking platforms. The CB system can then produce plans including
routes and schedules to satisfy the time- and space-restricted requests accordingly (Huang et al.|
2020). In literature, a class of approaches allows to generate optimal solutions for these static
demands, but at the cost of reduced flexibility for the service, as dynamic travel requests are
ignored and not handled during operation. To tackle this pivotal issue, that reduces the usability
of the service, a growing number of approaches are exploring the idea of a two-stage optimization
procedure for on-demand CB service, as shown in Fig. [I} The first stage is similar to the traditional
CB service design and generates the initial plans (including routes, timetables and schedules) for
static requests. Each request contains a paired origin-destination (OD) and preferred departure
time. The second stage responds to dynamic requests received by adjusting the initial plans during
operation (Wang et all 2020). However, even this class of approaches is not fully exploiting the
flexibility of the CB system. It may be impractical to satisfy all the dynamic requests, that also
provide strict constraints on preferred time windows for pickup and drop off, starting from the
generated static plan.

During the operation, the dynamic stage is triggered once new requests pop up. The re-planning
process activities are implemented to insert each emerging request into the current network. If
existing CB routes are able to fully satisfy the spatial-temporal constraints of the request, the
service is updated and followed by drivers via real-time communication; otherwise, the request is
ignored by the system and defined as unserved. The main reason behind this is that the short
response time makes it impossible to rapidly input new requests into the current network while
fulfilling travel restrictions of both already assigned and new requests. Therefore, the prediction
of the dynamic requests is essential for planning to prevent the unserved requests and minimize
uncertainty in operation of the dynamic stage, which can improve the operational efficiency of
CBs.

To fully reap the benefits of CB systems, it is crucial to have in advance an estimate of the dynamic
requests, to generate plans that are robust with regards to dynamic changes and adjustments.
Having approaches that can accurately estimate future passenger demands would help ensuring
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Figure 1: The planning process of the on-demand customized bus service.

Table 1: Data structure of collected SCD information.

Field Name Description

CardID Card identification number
LinelD Bus line number

BusID Vehicle identification number
UpTradeStation Boarding station number
UpTradeTime Boarding time
DownTradeStation | Alighting station number
DownTradeTime Alighting time

a higher level of optimization in CB systems, as well as better service and higher environmental
benefits. To this end, in this paper we formalize the predicting task, we describe best practice, and
investigate the use of a range of machine learning algorithms. Our analysis is performed considering
real-world smartcard data collected by the Automatic Fare Collection system in Beijing over 2
months, and the results demonstrate that machine learning is a promising approach to be used
to support CB systems in improving their effectiveness. Further, the proposed analysis provides
useful insights into how to preprocess data and to represent complex variables, that can help in
fostering the use of machine learning techniques in similar applications.

2 METHODOLOGY

A quantitative case-study approach has been adopted to define the predictive task and determine
the machine learning technique that best predicts passenger demands for a CB system.

Data Source

In this study we use real-world data extracted from the SCD collected by the Automatic Fare
Collection (AFC) system in Beijing, China, which can provide a complete overview of the trips.
The SCD contains more than 12 million transactions per day. Each transaction records details of
the get on and get off location, and time for the trip information (see Table .

For this experimental analysis, we consider passenger spatial-temporal dynamics collected from
December 1, 2018 to January 31, 2019. The considered period of time is before the start of the
COVID-19 pandemic, so no restrictions were in place at the time. We focus only on working days,
as travel requests of CB are expected to be mainly from commuters. For the same reason, we
select records from typical residential and working areas during the morning peak hours (7:30-
9:00). This is the time when the CB system is expected to be most under stress from dynamic
travel demands. Starting from the raw SCD data, we follow the approach proposed by |Guo et



al.| (2019) to generate corresponding demands for a CB system. In particular, the implemented
approach relies on three major stages, namely trip chain generation for non-transfer and transfer
trips, station identification, and OD matrix generation. After that, travel demands for each OD
and corresponding boarding and alighting timestamps for passenger groups are collected, and used
as the input for the prediction system. The distribution of extracted travel demands is given in
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Figure 2: Distribution of extracted travel demands.
The data set includes 5 features, all alphanumeric, referred to as original features in Table
Data Preprocessing and Transformation

To support the predictive task, the limited initial set of available features has been extended as
shown in Table From the original date, we extracted two additional features referring to the
specific day of the week (Monday, Tuesday, etc.) and the indication of whether the day is a Monday,
Friday, or any other day of the week. This is because this 3 classes of days can show different travel
patterns. From the original time stamp, 5 time categories have been identified, namely 0700-0730,
0730-0800, 0800-0815, 0815-0830, 0830-0845 and converted to ordinal categorical values. The
categorization of starting demand time decreases the complexity of the predicting element, while
preserving the usefulness of the information.

The 2 features reporting the IDs of the origin and destination bus stops have been combined into
a single variable by concatenating the corresponding values. In order to do that, all the possible
combinations have been generated. This lead to some empty demands, that augmented the size
of the data set, with a ratio of datapoints showing demand vs without demand to be in the
imbalanced ratio of 8/23. Finally, the original numeric demand feature has been divided into 2
different features, namely the size of the passenger group for the demand, and a Boolean feature
indicating the presence of the demand for a specific set of features (Origin-Destination pair, Date
and Time). In the considered data set, the size of demands ranges between 0 (where there is no
demand) and 30.

Table 2: Extended Features

Original features | Extracted features Type
Date datetime format
Date Week Day Categorical
DayType Categorical
Time Stamp Time period Categorical
Origin . o .
Destination Origin-Destination Categorical
Size Integer
D
emand Presence Boolean

We performed a correlation analysis of the extended variables, that confirmed that there is no
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Figure 3: Demand size distribution.

correlation among them, hence the set is suitable to be used for training purposes.

Fig. [3] shows the distribution of the passenger groups sizes in the considered data set. Notably,
smaller groups are very common, while larger groups — here the largest considered is of 30 passengers
— are much less usual.

Predictive Task

Given the complexity of the predictive task at hand, we decided to define it as two different
predicting tasks. First, a classification step that allows to identify the presence of demand (last
row, Table 7 then there is a subsequent regression step that aims at predicting the size of the
corresponding passengers group. This separation gives also us the opportunity to assess the abilities
of a range of well-known machine learning approaches on two different yet crucial tasks.

The following approaches have been considered for this analysis: K-Nearest Neighbors (KNN)(Wu
et al., 2008)), Decision Tree, Random Forest (Breiman) [2001), AdaBoost (Schapire} [2013)), Light-
GBM (Ogunleye & Wang), 2019), and Multi Layer Perceptron (MLP) (Haykin, [1994). The ap-
proaches have been selected based on the range of implemented techniques, and on their perfor-
mance on well-known benchmarks.

As a baseline algorithm, to better contextualize the achieved results, we use a traditional Linear
Regression approach, declined in its Logistic Regression form for the classification task.

FEvaluation Metrics

For the binary classification problem of predicting the presence of demand, we relied on the well-
known notions of true positive (negative), false positive (negative). We then consider as metrics
for assessing the abilities of systems, accuracy, F1 score, and Area Under the Curve (AUC).
When it comes to the metrics to assess the capabilities of the regression models, those selected are
Mean Absolute Error (MAE), Mean Squared Error (MSE), and Root Mean Squared Error (RMSE).
MAE measures the average of the absolute residuals (the difference between the actual value and
the predicted value) in the dataset. MSE measures the variance of the residuals and the RMSE
measures the standard deviation of those residuals. For those metrics, the lower the value, the
better the performance of the regression model.

Training Settings

For training, testing, and validating purposes we used sklearn (Pedregosa et al. |2011). sklearn
is a robust and well-known Python library for performing ML tasks. It natively supports hyper-
parameter optimization (Feurer & Hutter, 2019). In the following, we shortly summarize the
parameters considered for the optimization of the learning algorithms.

e KNN: The value of K, i.e. the number of nearest neighbors to be considered.

e AdaBoost: we optimized 3 aspects: the base estimators, the number of estimators in the
ensemble, and the learning rate. The base estimators were given three choices between
Support Vector Machine, Logistic Regression, and Decision Trees.

e LightGBM: the 4 parameters to be optimized include the boosting type (GBDT or DART),
the number of maximum leaves in each learner, the boosting learning rate, and the number
of boosted trees.

e MLP: we optimized 5 parameters, namely the set of hidden layer sizes, activation functions,
solvers, alphas, and learning rates.



Table 3: Classification Results Summary

Classifiers Accuracy | F1 | AUC
Logistic Regression 73.81 2.42 | 58.75
KNN 82.65 49.15 | 80.52
MLPClassifier 79.49 45.95 | 79.88
Decision Tree 78.14 39.50 | 75.98
AdaBoost 75.88 15.89 | 76.00
Random Forest 72.59 71.81 | 82.67
LightGBM - DART 87.17 77.85 | 94.65

RF DART

Ensemble Predicted
Models

Positive |Negative|Positive |Negative

Positive | 2206 962 1425 193

TRUE
Negativgd 770 2382 618 4084

Figure 4: Confusion matrices of Random Forest and Light GBM - DART.

The learning rate ranges for all the aforementioned hyper-parameter optimizations, have been kept
as floating values ranging between 0.05 to 1.

Finally, we also optimized the best Logistic Regression algorithm, selecting among those imple-
mented by the sklearn library.

To reduce noise, random seeds have been fixed.

For the classification task, the hyper-parameters optimization aims at improving two metrics,
namely F1 and ROC-AUC. Ties are broken in favor of AUC. For regression, the focus is on
minimizing the Mean Absolute Error (MAE).

3 REsuLTs

In this section we present the results of our extensive experimental analysis. Some preliminary
tests, not shown in this paper, performed by considering the single straightforward regression task
of predicting at the same time both presence and size of demand lead to models not usable in
practice, due to the extreme error. Therefore, in this section we consider the two steps predictions
discussed in Methodology. First, we focus on the classification step that aims at predicting the
likeliness of travel demand between two stops, and second we consider the regression task of
predicting how many passengers will be part of the travel group.

Table [3| shows the performance of the considered algorithms on the binary classification task.
The results indicate that, unsurprisingly, Random Forest is the algorithm that shows the worst
accuracy; it has been outperformed even by Logistic Regression and Decision Tree. This is due to
the limited number of available features, even in the extended set, that is a known element that
can reduce the performance of this class of approaches. On the other hand, Random f=Forest
should be the second best choices when evaluating on F1 score and AUC, demonstrating that
the unbalanced nature of the data is not strongly negatively affecting the generated models. The
optimized Light GBM using DART is delivering outstanding performance according to all metrics;
however, we observed that with almost all other hyper-parameter configurations of LightGBM
showed significantly worse results (not shown in the table). Finally, it is worth noticing the very
low F1 score and AUC of the Logistic Regression approach, suggesting that the approach does not
cope well with the unbalanced data set.

To shed some light into the relative performance of Random Forest and Light GBM, Figure [4 shows
the corresponding confusion matrices. Random Forest (RF) is better in predicting positive cases,
but shows low performance when predicting cases for which no demand is expected.

We now turn our attention to the regression task. Results are presented in Table ] As a first
remark, we do not include KNN results because, due to the way KNN models are generated, it
quickly runs out of memory for large data sets — hence providing predictions of very low quality.



Table 4: Regression Results Summary

Regressors MAE | MSE | RMSE
Linear Regression 1.87 | 13.49 | 3.67
MLPRegressor 1.92 | 13.69 | 3.70
Decision Tree 1.10 9.30 3.04
AdaBoost 3.62 | 23.54 | 4.85
Random Forest 0.82 | 4.05 2.01
LightGBM - DART | 0.88 | 3.62 1.90
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Figure 5: Mean absolute error (y-axis) for each actual demand value (x-axis) when Light GBM is
used for the regression task.

With regards to the other considered algorithms, Light GBM is again providing extremely good
performance, but in terms of MAE Random Forest is, surprisingly, the approach that shows best
results. AdaBoost is instead the worst one, that produces predictions that are not usable in practice
for optimizing the routes of CB systems.

Figure 5] shows how the MAE varies according to the actual demand to be predicted, when the
best predictor is used. As expected, for ranges of demand that are extremely well represented in
the data set, the error is very limited. When demands get larger and less common, the predictions
show a higher degree of variability. Pragmatically, this means that the predictions will be more
precise for common demands — and the graph shown already provides some information about the
reliability of predictions made for different demand sizes.

Finally, a general result can be derived by comparing Random Forest and AdaBoost results on both
classification and regression tasks that using Bagging ensembles over Boosting ensembles lead to
better results in regression, but the contrary is true in terms of classification. While this behavior
may not generalize on different data sets, it can provide an interesting take-home message for this
class of applications.

4 CONCLUSION

With the aim of fostering the use and efficiency of customized bus systems, in this paper we tackled
the task of forecasting travel demands to be served. Our analysis provided insights into how data
can be processed to provide high quality input for machine learning algorithms, and we showed
how a challenging task can be divided into more amenable tasks that are easier to be be dealt
with. On this regards, we demonstrated the abilities of a range of predictive techniques on both
classification and regression tasks, using realistic data from the Beijing area. Our results indicate
that machine learning provides suitable approaches to tackle the challenges of CB systems due to
the limited ability to forecast ongoing demand.

Future work will focus on extending the analysis to different metropolitan areas, and to increase
the considered features to include aspects such as weather, traffic, etc.
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