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Short summary

We present a method of efficiently incorporating attitudinal indicators in the specification of La-
tent Class Choice Models (LCCM), extensions of Discrete Choice Models (DCMs) that segment
populations based on the assumption of preference similarities. We introduce Artificial Neural
Networks (ANN) to formulate the latent variables constructs. This formulation overcomes struc-
tural equations in its ability to explore the relationship between the attitudinal indicators and
the decision choice, given the machine learning (ML) flexibility and power to capture unobserved
and complex behavioural features, such as attitudes and beliefs. All of this, while maintaining
the consistency of the theoretical assumptions presented in the Generalized Random Utility model
and the interpretability of the estimated parameters. We test our proposed framework for estimat-
ing a car-sharing service subscription choice with stated preference data. The results show that
our proposed approach provides a complete and realistic segmentation, which helps design better
policies.
Keywords: Car-sharing, Discrete choice modelling, Machine learning, Psychometric Indicators.

1 Introduction

This study explores a new method of efficiently incorporating attitudinal indicators in the speci-
fication of LCCM by relying on ML techniques while preserving the benefits of the economic and
behavioural interpretability of DCMs.
Walker & Ben-Akiva (2002) presented a practical generalized random utility model with exten-
sions for latent variables and classes. They extended the Random Utility Model (RUM) to relax
its assumptions and enrich the model’s capabilities. They refer to latent classes as unobserved
population groups, in which each individual has an associated probability of belonging to each
group/class on the assumption of preference similarities. On the other hand, psychometric indi-
cators measure the effect of unobserved attributes on individuals’ preferences on topics related to
the choice and they are additional information that helps specify and estimate latent classes.
Atasoy & Bierlaire (2011) estimated an LCCM where psychometric indicators are included in the
maximum likelihood estimation to improve the model’s accuracy. The psychometric indicators
were modelled, conditional on the latent class, as parameters jointly estimated with the choice and
the class membership model. The model showed that the psychometric indicators allow for richer
analysis and generate significantly different class membership estimates. In another approach,
Hurtubia et al. (2014) introduced psychometric indicators by computing the probability of giving
an agreement level to an attitudinal statement as an ordinal logit, also dependent on the individual
class. However, complex interactions between attitudinal variables and the decision-making pro-
cess should be expected Bahamonde-Birke et al. (2017). We hypothesise that ML could be a good
starting point to explore such interactions, given its flexibility and power in capturing unobserved
and complex interactions.
In recent years, the use of ML techniques has increased, mainly due to their power to improve pre-
diction accuracy. However, one of the main critiques of ML techniques in contrast to econometric
models, is that they tend to generate less interpretable results. Thus, transportation researchers
have focused on providing meaningful estimates from ML applications, that can be useful for travel
analysis and policy decisions. For example, Arkoudi et al. (2021) proposed an embedding encod-
ing for the socio-characteristic variables that provided a latent representation of these variables
in concordance with individuals’ choices. Han (2019) included a nonlinear LCCM using a neural
network to specify the class membership model. Their model outperformed the traditional ones
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in prediction accuracy with the trade-off of losing some interpretability. Sfeir et al. (2021, 2022)
presented two model formulations for the construct of latent class choice models using Gaussian
process and Mixture models. All these works employed ML in DCMs to allow for more flexibility
in the definition of the latent constructs. However, there is still a lack of effective use of these
techniques for incorporating attitudinal information into the model formulation.

2 Methodology

We follow the generalized RUM structure presented by Walker & Ben-Akiva (2002) for inter-
pretability purposes and we include the information on the attitudinal indicators by employing
an ANN to formulate with greater flexibility the latent variables. Figure 1 shows the graphical
representation of the proposed formulation.

Figure 1: Graphical representation of the model formulation

LCCMs are composed of two sub-models: a class membership model and a class-specific choice
model. The former computes the probability of an individual n belonging to a certain class, while
the latter assigns the probability of choosing each alternative, given that individual n belongs to a
certain class k.
The utility of the class membership model can be written as:

Unk = Vnk + υnk (1)

where Vnk is the representative utility of individual n belonging to class k and υnk is the error
term that is assumed to be independent and identically distributed (iid) Extreme Value Type I
over individuals and classes. In this case, we define Vnk as:

Vnk = ASCk +Qnγk + rnδk + ωnbk (2)

where ASCk is the alternative-specific value for class k, Qn is the vector containing socio-characteristics
of individual n, and γk the vector of unknown parameters that need to be estimated for each class
k. In addition, rn is a vector of length Z containing the latent variables for individual n and δk
the corresponding vector of unknown parameters specific to class k. Finally, ωn is an individual-
specific constant with its corresponding coefficient bk for each class k. It represents the individual
variation of all the latent variables caused by the variance of their underlying distributions. It is
formulated as a one-layer ANN that gets activated by the ID of each individual in the train set
(Idn is one for individual n and 0 otherwise),

ωn =

N∑
1

w
(1)
1n Idn (3)
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where w
(1)
1n are the weights of the layer.

Given the distribution of the error term (υnk), the probability P (qnk|Qn, γk, rn, bk) can be expressed
as:

P (qnk|Qn, γk, rn, bk) =
eVnk∑K

k′=1 e
Vnk′

(4)

The novelty of this work is the employment of ANN for the construction of latent variables. We
propose a non-linear relationship between the socio-characteristics of the individuals and the latent
constructs by employing two densely connected layers:

rzn = a2(

H∑
h=0

w
(2)
zh a1(

M∑
m=0

w
(1)
hmQmn)) (5)

where M is the number of socio-characteristic variables used to predict the answer to the indica-
tors, and H is the number of hidden units in the hidden layer. w

(1)
hm are the weights of the first

layer, and a1 represents the first activation function defined as a Rectified Linear Unit (ReLU)
(a1(x) = max(0, x)); for the second layer, a linear activation function is applied a2(x) = x, and the
weights are represented by w

(2)
zh . By adding an extra input Q0n, which is set to one and extending

the sum to go from zero, we avoid writing the intercept term.
The number of latent variables Z, the number of hidden neurons in the hidden layer H, and the
number of densely connected layers should be tuned since they are not observed in the data.
The formulation presented is based on the hypothesis that the socio-characteristics of the individ-
uals define the latent variables. Moreover, these latent constructs influence the response to specific
attitudinal indicators. We focus on the case where indicators take the form of statements that
receive an ordered response, in Likert (1932) scale. Thus, we define the utility of individual n for
indicator p, as a measurement of the level of agreement with the statement, and we formulated it
as:

Upn = Vpn + νpn = rnαp + cpωn + νpn (6)

where Vpn is the representative utility of individual n to indicator p and νpn is the error term that
is assumed to be iid Extreme Value Type I over individuals and indicators. rn is a vector of length
Z containing the latent variables of individual n, αp is the vector of corresponding parameters
to be estimated. ωn is the individual-specific parameter estimated together with the latent class
model, and cp is its corresponding coefficient for each indicator p .
Therefore, the probability that individual n answers with a certain level of agreement l to indicator
p is expressed as:

P (Ipln = 1|rn, αp, cp, ωn) = P (τpl−1 < Upn < τpl ) (7)

where we define Ipln as 1 if individual n answers with a level of agreement l to indicator p and 0
otherwise. τpl are strictly increasing class-specific thresholds that define an ordinal relation between
the utility Upn and the level of agreement to indicator p.
The probability of individual n providing an answer l to indicator p can be computed as an ordinal
softmax:

P (Ipln = 1|rn, αp, cp, ωn) = P (τpl−1 < Upn < τpl ) =P (τpl−1 < Vpn + νvp < τpl ) =

= Prob(νvp < τpl − Vpn)− P (νvp < τpl−1 − Vpn) = =
eτ

p
l −Vpn

1 + eτ
p
l −Vpn

− eτ
p
l−1−Vpn

1 + eτ
p
l−1−Vpn

(8)

where one threshold per indicator is set to zero, as only the difference between them matters.
We estimate all components of the proposed model simultaneously by employing the EM Demp-
ster et al. (1977) algorithm, which combines an expectation step with a maximization one until
convergence is reached. The final model architecture is presented in Figure 2.

3 Results and discussion

We test the model on a dataset from a 2020 tailor-made online survey in Copenhagen (CPH).
Respondents needed to be at least 18 years old and have a valid driver’s license. The sample
consists of 542 complete answers from which 80% are used for training and 20% for testing. The
relevant parts employed in the estimation include:

1. A survey on the respondent’s socio-characteristic characteristics
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Figure 2: Model arquitecture

2. A survey addressing questions regarding respondents’ attitudes toward private and car-
sharing (CS) using a 5-point Likert (1932) scale

3. A Stated Preference (SP) experiment with different options for CS plans

For further details on the data, the reader is referred to Frenkel et al. (2021).

Baseline Results

To benchmark the proposed model, we tried to follow the formulation from Walker & Ben-Akiva
(2002) which can be shown as a graphical representation (Figure 2), with the difference that the
relation between the indicators’ utility and the individuals socio-characteristic characteristics is
linear. However, the class membership formulation’s simplicity made the model unable to converge,
resulting in a non-invertible Hessian matrix. Therefore, to get a comparable magnitude for the
likelihood, we estimated the model with a traditional LCCM as a baseline, where the representative
part of the class membership utility is just a linear combination of the socio-characteristic variables.
Results are presented in Table 1.

Table 1: LCCM results without attitudinal variables
Model Nº Classes Nº parameters Null LL LL AIC BIC R-squared Test null LL Test LL
LCCM 2 30 -2047.21 -1599.41 3258.81 3413 0.22 -515.02 -400.52
LCCM 3 43 -2047.21 -1568.14 3234.29 3487 0.23 -515.02 -398.73

We employ the same socio-characteristics for constructing the class membership as in our proposed
formulation. More specifically, we include age, binary variables that indicate if the individual has
a bike, a car or kids at home and if they are students, retired or CS members. However, we found
that having a car at home, being retired or being a student, were not statistically significant under
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the LCCM formulation. Instead, our proposed formulation allows us to significantly include this
information in the model, improving our characterization of the latent variables.
Given the probability of each individual in the sample and its corresponding socio-characteristics,
we have represented the classes from the baseline model in Figure 3, by using the Bayes Theorem
to compute:

Pn(socio− characteristic|K = k) (9)

Figure 3 is compared in the next subsection with the proposed model results.

Figure 3: Representation of the class membership of the LCCM model

Proposed Model Results

We have employed the same train/test split as for the baseline model. The EM process has been
estimated multiple times with random initializations. We have computed the likelihood variance
between the different model estimates to check for stability. The results are summarized in Table
2.

Table 2: Model results

Nº Classes Nº latent
variables Iterations Null LL LL Variance

LL R-squared Test null
LL Test LL Variance

Test LL
2 2 15 -2047.21 -1575.32 14.62 0.23 -515.02 -404.72 0.28
3 2 30 -2047.21 -1539.56 22.01 0.25 -515.02 402.72 9.8
3 3 25 -2047.21 -1531.41 26.36 0.25 -515.02 -400.73 9.36

The model with three latent classes and two latent variables is selected as the best model. The
one with three classes and three latent classes has a slightly better fit, however, its corresponding
latent variables parameter estimates were not statistically significant.
Comparing the results from tables 1 and 2, we observed an increase in the training likelihood for
our formulation. We do not provide better results for the test data, but just comparable ones.
This could be due to the small size of the test sample and/or to the fact that we don’t have access
to attitudinal information or wn values in the test stage, which affect prediction accuracy.
Table 3 shows the estimated parameters of the class-specific choice model with their corresponding
standard deviations, where all the data has been used for the estimation. The utility for not
choosing any of the CS services is set to zero due to parameters’ identification.
Based on the values and signs of the estimated beta parameters, we observe that class 1 and class
2 are more negatively affected by the subscription cost, while class 3 is less influenced by this cost,
but more negatively affected by the usage cost. Moreover, individuals with a high probability of
belonging to class 3 are the most concerned if the type of engine is combustion. Thus, CS could
be seen as an electric alternative for them. Given the beta values for displaying the cost in hours
(βUsage cost per hour) or days (βUsage cost per day), there is a bias towards displaying the price per
minute (baseline), related to the fact that CS users tend to drive for short time periods. Regarding
the probability of finding a car, it is a more important feature for classes 2 and 3, which make
them more dependent on the availability of the service. Overall, class 2 seems to be less prone to
use any CS (including P2P), given all its estimated parameters.
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Table 3: Estimate and standard deviation of the parameters of the class-specific choice
model

Variable Class specific choice model
Class 1 Class 2 Class 3

ASCCS free−floating 3.50(0.46) -2.71(1.34) -1.68(0.89)
ASCCS station−based 3.04(0.48) -2.64(1.34) 0.07(0.80)
ASCCS peer to peer 4.12(0.52) 0.47(1.45) 1.50(0.83)

ASCroundtrip 2.97(0.48) -3.50(0.40) 0.15(0.80)
βOne time subscription cost -1.00(0.17) -1.12(0.51) -0.35(0.22)

βUsage cost(OWFF,OWST,RT ) 0.05(0.04) -0.16(0.09) -0.34(0.08)
βUsage cost(P2P ) -1.30(0.39) -5.57(1.31) -3.86(0.80)
βUsage cost per day -0.35(0.24) -2.40(0.74) -1.09(0.39)
βUsage cost per hour -0.10(0.21) -0.99(0.50) -0.43(0.34)
βOnly combustion cars -0.23(0.12) 0.09(0.33) -0.66(0.20)

βProbability of finding a shared car 0.13(0.44) 1.38(1.35) 2.70(0.75)
βWalking time from parking to destination -0.05(0.01) 0.02(0.04) 0.03(0.02)

Table 4: Parameters of the class membership model

Variable Parameter St error P-value
ASCclass1 0.97 0.45 0.031
ASCclass2 -1.40 0.51 0.0057

γkidsathome,class1 0.56 0.29 0.050
γkidsathome,class2 -0.45 0.37 0.22

δr1,class1 0.18 0.13 0.17
δr1,class2 -0.48 0.14 0.0009
δr2,class1 0.12 0.10 0.27
δr2,class2 -0.44 0.11 0.00
bclass1 0.61 0.44 0.17
bclass2 -4.014 0.54 0.00

The parameters of the class membership model are summarised in Table 4. Given the probability
of each individual in the sample, we have characterised the classes in Figure 4. Individuals with a
higher probability of belonging to class 1 have around 20% probability of being a CS member, a
bit above the sample average (17.5%). They also tend to have more kids at home, as well as bikes
than other classes. Studies like Uteng et al. (2019) have shown that when there are significant
life changes (e.g., birth of a child), people become more inclined to use CS. In opposition, class 2
presents the lowest probability of being a CS member and having kids or bikes at home. Retired
people tend to have more predisposition for this class, while students have less. This is aligned
with Prieto et al. (2017) which suggested that young people are more prone to use this service.
Finally, class 3 has the same probability of being a CS member as class 1, but it also has a lower
probability of owning a car, making people more reliant on the service’s availability. Comparison
between Figures 3 and 4, shows that the configuration of the classes changes when we include
attitudinal information, as it is expected.
By analysing the parameters for the latent variables in Table 4 and looking at their distributions

over individuals in Figure 5, we notice that the values of the first latent variable (r1) are always
negative. The more negative value of r1, the more probable is to belong to class 2, and therefore,
the less inclined people are to use CS services. A negative value of r2 seems to have the same
effect. Thus, individuals with a more negative combination of r1 and r2 tend to be less inclined
about CS and the other way around. Figure 5 suggests that students are more prone to use the
service while retired people are the least predisposed. Moreover, having or not having a car seems
to determine the clusters in which the rs values are structured. Finally, Figures 6 and 5 show that
people with a car at home agree more with the statement that the car is a status symbol. For
indicator 15, people with a more positive value of r2 seem to agree more with the statement that
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Figure 4: Representation of the class membership of our proposed model

Figure 5: Latent variables representation

they wouldn’t need a car if they have CS, as we would expect given the r2 coefficients of Table 4.

Figure 6: Latent variables representation characterized by the answers to indicators 6 and
15
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4 Conclusions

Our results suggest that the inclusion of attitudinal variables provides a DCM that is more behav-
iorally realistic. For example, individuals who are more inclined towards the concept of CS tend
to be grouped together in clusters with higher parameter estimates of the utility of choosing CS
plans. This indicates that beliefs and attitudes play a key role in decision-making, and including
this information allows for more accurate estimation and a better understanding of the classes that
help design better policies.
Within the limitations, convergence is defined empirically by setting the number of iterations due to
small fluctuations in the convergence of the EM algorithm. In addition, given the small sample size,
we could not divide the dataset in training, validation, and testing; therefore, the hyperparameters
of the ANN were not tuned according to the validation samples. This could be solved by employing
a bigger dataset. Moreover, to improve the prediction performance, other types of explainable AI
(e.g., SHAP) could be explored.
Although the limitations, we are optimistic that this analysis has opened the door to future research
on integrating attitudinal variables in DCMs through ML techniques.
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