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Short summary

This study investigates the effects of remote and flexible working styles on traffic congestion. We
first formulate an integrated equilibrium model simultaneously considering the working style,
official work start time, and departure time choice of workers via an extension of the bottleneck
model. Subsequently, we derive the equivalent optimization problem of the equilibrium problem
as linear programming (LP) and demonstrate that we can obtain an analytical solution to the LP.
This analytical solution enables us to assess the effects of remote and flexible working on social
surplus and queueing loss. By comparing various situations, we show that implementing remote
and flexible work causes higher queueing loss with an equal social surplus than implementing
only remote work. Finally, we propose an integrated road management scheme that includes
dynamic pricing to prevent this paradoxical phenomenon and efficiently implements remote and
flexible working.
Keywords: remote working, flexible working, working style choice, departure time choice, bot-
tleneck model

1 Introduction

New working styles, which are different from the conventional style of commuting to an office at
a designated time, have become widespread, mainly owing to the COVID-19 pandemic. These
new working styles include teleworking, staggered work hours, and flexible work. Each working
style not only decreases the number of opportunities available to workers to contact each other in
the office but also reduces or disperses the commuting demand during peak-periods. Therefore,
promoting these working styles could potentially reduce commute-related congestion. However,
many companies and workers have adopted these ways of working independently of the aim of
the urban transportation system, which is to relieve traffic congestion. Under these circumstances,
whether remote work and staggered work hours contribute to reducing congestion and their effect
on road congestion are not well understood.
Many studies examined the relationship between traffic congestion and working style based on
Vickrey’s bottleneck model. Mun & Yonekawa, 2006; Fosgerau & Small, 2017; Takayama, 2015
formulated peak-period congestion models based on the bottleneck model and developed models
describing the choice of firms and workers to adopt fixed or flexible schedules. In addition,
many analyses of bottleneck models that consider the heterogeneity of preferred arrival times can
be interpreted as modeling flexible or staggered work hours (e.g., Hendrickson & Kocur, 1981;
Lindsey, 2004; Lindsey et al., 2019). Zhang et al. (2005) studied the trade-off between teleworking
and office working, and they considered the elastic travel demand by incorporating teleworking
as an alternative. Gubins & Verhoef (2011) analyzed the welfare effects of teleworking on road
traffic congestion in the context of Vickrey’s model. These studies highlight the positive effects of
flexible and remote working on traffic congestion and social welfare. However, these results are
based on analyses that consider only one type of working style. To develop effective congestion
reduction policies for the current situation where multiple new working styles are widespread, we
need to investigate how the relationship between these working styles affects traffic congestion.
This study investigates the effects of remote and flexible work on traffic congestion. We first formu-
late an integrated equilibrium model that accounts for flexible and remote work simultaneously
via an extension of the bottleneck model. Subsequently, we derive the equivalent optimization
problem of the equilibrium problem as linear programming (LP) and demonstrate that we obtain
an analytical solution to the LP. This analytical solution enables us to assess the impacts of remote
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and flexible work on social surplus and queueing loss. We present the following facts by compar-
ing four scenarios: - no policies, remote working, flexible working, and both remote and flexible
working:

• Implementing remote work causes lower queueing loss and higher social surplus than
implementing remote work.

• Implementing flexible work causes lower queueing loss and higher social surplus than not
implementing flexible work.

• Implementing remote and flexible work causes higher queueing loss with equal social
surplus than implementing only remote work.

The third fact describes a paradoxical phenomenon in which the simultaneous introduction of
flexible and remote working may increase queueing losses. This phenomenon may be interesting
and important for road management.
The remainder of this paper is structured as follows: Section 2 introduces the integrated equi-
librium model and derives its equivalent optimization problem. Section 3 presents an analytical
approach to solving the problem and the effects of remote and flexible working arrangements on
traffic congestion. Finally, Section 4 concludes the study and discusses future studies.

2 Model

Consider a city that consists of a central business district (CBD) and residential area connected
by a freeway (Figure 1). This freeway has a single bottleneck with capacity µ, and its free-flow
travel time is denoted by f . If the arrival rates of the workers at the bottleneck exceed bottleneck
capacity, a queue develops. To model queueing congestion, we use first-in-first-out (FIFO) and a
point queue in which vehicles have no physical length, as in standard bottleneck models.
All workers reside in the residential area. The workers are treated as a continuum, and the total
mass Q is a given constant. The firm, located in the CBD, offers two working styles for workers:
office and remote work. In addition, the firm allows K official work start (OWS) times {t1, ..., tK

}

for office workers. Each worker can choose between office and remote work. If they choose the
former, they must commute and choose the OWS time and the actual departure/arrival time. If
they choose the latter, they work from home without commuting to the office.
The trip costs for each commuter (i.e., office worker) are assumed additively separable into free-
flow travel, queueing delay, and schedule delay costs. The schedule delay cost is defined as the
difference between the actual arrival times and OWS time at the office. We assume piecewise
linearity in the schedule delay cost function, which is expressed as follows (Figure 2):

ck(t) ≡
{
β(tk− t) if tk < t
γ(t− tk) if tk ≥ t

∀k ∈ K , ∀t ∈ T . (1)

The trip cost of a commuter whose destination arrival time is t and OWS time is tk is defined as
follows:

Ck(t) ≡ ck(t)+α(w(t)+ f ) ∀k ∈ K , ∀t ∈ T . (2)
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where w(t) is the queuing delay experienced at the bottleneck by commuters with CBD arrival
time t. Parameters f and α represent the free-flow travel time and value of time, respectively. This
study assumes that f = 0 and α = 1 for all commuters.
Workers choose their working styles to maximize their own utility. Utility of an office worker
whose OWS time is tk and actual CBD arrival time is t determine θO−Ck(t), where θO represents
the wage parameter for office workers. In contrast, the utility of a remote worker is θR, where
θR represents the wage parameter for remote workers. We assume that office workers have
higher productivity and wages, i.e., θO > θR. In the equilibrium resulting from these choices of
the workers, the following properties hold: no worker can reduce their utility by unilaterally
changing their working style, and no commuter can reduce their commuting costs by unilaterally
changing their destination arrival time.
The equilibrium problem can be formulated as a linear complementary problem comprising five
equilibrium conditions. First, the worker conservation condition is expressed as follows:

(Worker conservation) QO+QR =Q, (3)

where QO and QR represent the numbers of office and remote workers, respectively. Second, the
equilibrium condition for workers in terms of working style is expressed as

(equilibrium condition for office workers)
{
ρ = θO−λ if QO > 0
ρ ≥ θO−λ if QO = 0

(4)

(equilibrium condition for remote workers)
{
ρ = θR if QR > 0
ρ ≥ θR if QR = 0

(5)

where ρ represents the equilibrium utility, and λ represents the equilibrium commuting cost.
Third, the office worker (commuter flow) conservation conditions for the commuting demands
must satisfy

(commuter conservation)
∑
k∈K

∫
t∈T

qk(t)dt =QO ∀k ∈ K , (6)

where qk(t) ≥ 0 is the arrival flow rate of commuters whose CBD arrival time is t and OWS time is
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tk. Fourth, the equilibrium condition for commuters is expressed as

(departure time choice condition)
{
λ = ck(t)+α(w(t)+ f ) if qk(t) > 0
λ ≤ ck(t)+α(w(t)+ f ) if qk(t) = 0

∀k ∈ K , ∀t ∈ T . (7)

Fifth, the queueing condition at the bottleneck is expressed as follows (Akamatsu et al., 2021):

(bottleneck queueing condition)


∑
k∈K

qk(t) = µ if w(t) > 0∑
k∈K

qk(t) ≤ µ if w(t) = 0
∀t ∈ T . (8)

The equilibrium state represents the collection of variables {QO, QR, λ, ρ, w(t), qk(t)} that satisfy
Eqs. (3) to (8).
Based on the methods reported by Iryo & Yoshii (2007); Akamatsu et al. (2021), an optimization
problem can obtain the aforementioned equilibrium state. Specifically, we can derive the equilib-
rium number of office/remote workers and commuter arrival flow patterns as the optimal solution
to the following linear programming. In addition, the equilibrium cost pattern, including the equi-
librium utility, equilibrium commuting cost, and queueing delay pattern, can also be obtained as
the optimal Lagrange variable of the problem.

min
QO,QR,{qk(t)}≥0

.
∑
k∈K

∫
t∈T

ck(t)qk(t)dt−θOQO−θRQR (9)

s.t.
∑
k∈K

qk(t) ≤ µ ∀t ∈ T [w(t)], (10)

∑
k∈K

∫
t∈T

qk(t)dt =QO [λ], (11)

QO+QR =Q [ρ], (12)

where the variables inside the square brackets represent the Lagrangian multipliers for each
constraint. We refer to this problem as the equivalent optimization problem. Equivalency can be
proven by comparing the first-order conditions with the equilibrium conditions.

3 Welfare impact of remote and flexible working policies

The model formulated in the previous section describes the equilibrium under various situations
by fixing certain parameters. In this section, we first develop a general approach to obtaining
equilibrium by solving the equivalent optimization problem. We then derive the equilibrium in
the following four situations by fixing the appropriate parameters (This paper assumes the two
OWS times differ by d in flexible working situation, i.e., K = 2 and t2− t1 = d.):

• Scenario (1): No policies (θR = −∞, K = 1)
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• Scenario (2): Remote working (K = 1)
• Scenario (3): Flexible working (θR = −∞, K = 2)
• Scenario (4): Remote working and flexible working (K = 2)

Finally, by comparing equilibrium in scenarios (1)-(4), we analyze the effect of the interaction
between remote and flexible working on traffic congestion.
To derive the equilibrium solutions systematically, let us decompose the equivalent optimization
problem into a hierarchical optimization problem consisting of the master problem and sub-
problem. The master problem determines the mass of office workers QO and remote workers QR.
The sub-problem determines the commuting departure flow patterns qk(t), in which QO is the
given parameter. We here introduce the hierarchical optimization problem below.

[Master] min
QO,QR≥0

. TC(QO)−θOQO−θRQR (13)

s.t. QO+QR =Q [ρ]. (14)

[Sub] TC(QO) ≡ min
{qk(t)}≥0

.
∑
k∈K

∫
t∈T

ck(t)qk(t)dt (15)

s.t.
∑
k∈K

qk(t) ≤ µ ∀t ∈ T [w(t)], (16)

∑
k∈K

∫
t∈T

qk(t)dt =QO [λ]. (17)

By solving the sub-problem, we first derive the equilibrium commuting cost as a function of
the total commuting demand (the number of office workers) determined by the master problem.
Subsequently, we solve the master problem using the equilibrium commuting cost.
The sub-problem has the same structure as the single bottleneck model, and we can analytically
solve it by using the condition that all commuters incur the same commuting costs (w(t)+ ck(t))
in the equilibrium state, as shown in Figures 3 and 4. Figure 3 illustrates the equilibrium ar-
rival/departure flow pattern at the bottleneck and the equilibrium cost pattern with K = 1 when
the total commuting demand is X. Similarly, Figure 4 illustrates the equilibrium commuting cost
pattern with K = 2 when the total commuting demand is X. In both figures, λ(X) represents the
equilibrium commuting cost derived as follows:

λ(X) =


X
µ
δ if K = 1

min
{

X
2µ
δ,

X
µ
δ−dδ

}
if K = 2

, (18)

where δ = βγ/(β+γ).
Based on the equilibrium commuting cost λ(X), we obtain the solutions to the master problem,
i.e., QO and QR. Specifically, from the optimality condition of the master problem, we find that
the following relationship holds in equilibrium:

QO =min{λ−1(θO−θR), Q}, (19)

whereλ−1(·) is the inverse function ofλ(X). Thus, “the solution of equationθO−θR =λ(X)” or “Q”,
whichever is smaller, is the total commuting demand QO. By combining QO and the conservation
condition of the workers, we find the number of remoter workers QR. This mathematical approach
corresponds to a graphical approach determining the intersection between θO −λ(X) and θR.
Figure 5 illustrates the intersection between θR and θO −λ(X | K). In Figure 5, intersections I(1),
I(2), I(3), and I(4) represent equilibrium states for each scenario. By finding the coordinates of these
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Figure 5: Equilibrium number of office/remote workers in scenarios (1)-(4).

intersections, the analytical solution for each scenario can be derived as follows1:

Scenario (1): Q(1)
O =Q, Q(1)

R = 0, λ(1) =
Q
µ
δ, ρ(1) = θO−λ

(1), (20)

Scenario (2): Q(2)
O =

µ

δ
(θO−θR), Q(2)

R =Q−Q(2)
O , λ

(2) = θO−θR, ρ
(2) = θR, (21)

Scenario (3): Q(3)
O =Q, Q(3)

R = 0, λ(3) =
Q
µ
δ−dδ, ρ(3) = θO−λ

(3), (22)

Scenario (4): Q(4)
O =

2µ
δ

(θO−θR), Q(4)
R =Q−Q(4)

O , λ
(4)
= θO−θR, ρ

(4) = θR. (23)

Using Eqs. (20) to (23), we can calculate the social surplus and queueing loss in each scenario. The
social surplus and queueing loss correspond to the areas of the regions in Figure 5, as shown in
Table 1. In Figure 5, MU(X | K = 1) and MU(X | K = 2) are social marginal utility functions for K = 1
and K = 2, respectively.

Table 1: Comparison of the scenarios
Social Surplus SS Queueing Loss QL Schedule Loss SL

Scenario(1) SS(1) = AFCO QL(1) = AI(1)F SL(1) = ABI(1)

Scenario(2) SS(2) = AGI(2)ECO QL(2) = AI(2)G SL(2) = AHI(2)

Scenario(3) SS(3) = AJKCO QL(3) = ADI(3)KJ SL(3) = ABI(3)D
Scenario(4) SS(4) = AJLI(4)ECO QL(4) = ADI(4)LJ SL(4) = AMI(4)D

By comparing these areas, we obtain the following theorem:

Theorem 3.1 (Remote work effect). Implementing remote work causes lower queuing loss and
higher social surplus than not implementing remote work.

QL(2) <QL(1), SS(2) > SS(1) (24)

1Strictly speaking, the cases must be divided according to θR. Because of space limitations, this study
shows only the most standard cases.
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Theorem 3.2 (Flexible work effect). Implementing flexible work causes lower queuing loss and
higher social surplus than not implementing flexible work.

QL(3) <QL(1), SS(3) > SS(1) (25)

Theorem 3.3 (Remote work paradox). Implementing remote and flexible work causes higher
queuing loss with equal social surplus than implementing only remote work.

QL(2) <QL(4), SS(4) = SS(2) (26)

Theorem 3.1 and Theorem 3.2 state the positive effects of remote and flexible work, respectively.
In contrast, Theorem 3.3 describes a paradoxical phenomenon in which the simultaneous imple-
mentation of flexible and remote working may cause higher queueing losses. This paradox is
due to the induced demand created by decreasing commuting costs for flexible working. That is,
even if the flexible working spreads out the OWS time, additional traffic congestion around each
OWS time occurs because the utility of office workers is equal to (to balance) the utility of remote
workers in the equilibrium state.
This paradox of the relationship between flexible and remote working styles can be prevented
by implementing a dynamic pricing scheme. Specifically, the road manager imposes a time-
varying congestion toll that mimics the queuing delay pattern in scenario (4) to the commuters.
In equilibrium under this dynamic pricing, bottleneck congestion is completely eliminated, and
the utility of all workers maintain the same as before the implementation of the pricing. Since
this pricing scheme gives the road manager toll revenue equal to queuing loss, the utility of the
workers increases if the toll revenue is appropriately returned to workers. These results imply
that combining multiple policies can affect efficiency and highlight the importance of analyzing
the combined effects of multiple policies.

4 Conclusion

This study investigated the impact of flexible and remote work on traffic congestion using the
bottleneck model. We first formulated an integrated equilibrium model that simultaneously
considered three worker choices: office/remote work, OWS time, and departure time choices.
Furthermore, we elucidated that the equilibrium model had an equivalent optimization problem.
We derived the equilibrium solution using a hierarchical decomposition approach and calculated
the social surplus and queuing loss under various situations. Comparing these situations showed
a paradoxical phenomenon in which queuing losses were higher while social surplus remained
constant when flexible and remote work policies were considered simultaneously than when only
remote work policies were considered. We conclude that the cause of this paradox is the demand
induced by reduced commuting costs for flexible working.
Future studies may investigate a more general model and reveal the impact of the relationships
between various working styles on traffic congestion. Specifically, we may extend the network
structure to corridor networks with multiple residential areas. This extension analysis allows
us to understand the impact of the relationships between flexible and remote working styles on
the location choice of workers. We also must model the agglomeration economics of office work
and investigate the policy effects more precisely, considering the trade-offs between the office and
remote work.
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