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Short summary

The environmental benefits and driving range of electric vehicles are closely related to their
energy consumption. In this paper, we analyze the energy consumption characteristics of electric
mobility systems in a multimodal urban traffic context by establishing the aggregated relationships
between macroscopic fundamental diagram (MFD) dynamics and network-wide energy consump-
tion. To do this, we utilize a data-based approach, combining vehicle trajectories collected by a
swarm of drones in the downtown areas of Athens, Greece, during the pNEUMA experiment with
microscopic energy consumption models. We assume all the trajectories are driven by electric
vehicles yet maintain the same behavior observed in the pNEUMA dataset. Preliminary results
show well-defined relationships between aggregated traffic parameters and energy consumption at
a network level. The total energy consumption of electric cars and buses in the network increases
linearly with vehicle accumulation under uncongested traffic conditions. At the same time, the en-
ergy consumption per distance traveled by electric buses significantly decreases as the spatial mean
speed increases. While for electric cars, the impact of spatial mean speed on energy consumption
is marginal, especially when the average speed is above 10 km/h.

Keywords: Electric mobility, Energy consumption, pNEUMA dataset, Macroscopic funda-
mental diagram.

1 Introduction

Climate change, mainly caused by carbon dioxide emissions from human activities, severely
threatens human health and the planet’s ecosystem (Zhang et al., 2020). The transportation sector
could play an essential role in climate change mitigation, as the sector is responsible for the highest
energy consumption in 40% of countries globally and contributes to approximately 15% of total
greenhouse gas emissions (IEA, 2022). It is worth mentioning that road transportation is the
largest source of transport emissions, accounting for 69% of the sector’s overall emissions (IPCC,
2022). This situation will be even more alarming in the decades to come as the trend toward
motorization continues (Gao & Newman, 2018).

The electrification of vehicle fleets has been widely recognized as a crucial path to decarbonizing
and alleviating fossil fuel dependency in the road transportation sector. Battery electric vehicles
(EVs) represent an advanced and promising technology that offers an opportunity to increase
energy efficiency and achieve ‘zero emissions’ compared to their traditional fossil fuel-powered
counterparts (Xie et al., 2020). However, EVs are not truly ‘zero emissions’ from the life cycle
perspective as they consume electrical energy, and the indirect emissions produced by the electricity
generation are non-negligible, especially where carbon-intensive grids operate. This highlights that
the environmental benefits provided by EVs are directly dependent on their energy consumption.
Moreover, energy consumption determines vehicle driving range, and the limited driving range
remains one of the significant barriers to the massive adoption of EVs. In this context, optimizing
EVs’ energy consumption plays a vital role in advancing the development of a more sustainable
transportation system while concurrently alleviating concerns surrounding range anxiety for EVs.

Most studies so far have focused on minimizing the energy consumption of EVs from two per-
spectives. One is adopting an eco-driving strategy, which provides drivers with recommendations
for modifying their driving behavior to avoid the high energy consumption caused by aggressive
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driving patterns (Y. Zhang et al., 2022; Donkers et al., 2020; Bingham, 2012). The other is develop-
ing an eco-routing strategy, which incorporates the energy-saving potentials when planning routes
for electric vehicle operation (Ahn et al., 2021; Basso et al., 2019; Fiori et al., 2018). Although
these strategies are efficient and reliable, their real-world application is limited in terms of scope, as
they typically apply to a few routes or trips and a single transportation mode. While several stud-
ies have investigated the impact of eco-routing and eco-driving strategies on network-wide energy
consumption, they mostly resorted to traffic simulators and used the simplest energy consumption
models (e.g., energy consumption is linear to distance) for algorithm simplicity (see e.g., Rakha
et al., 2012; Hiermann et al., 2019)). Moreover, to the best of our knowledge, no study yet has
analyzed the energy consumption characteristics of EVs in a multimodal traffic network. In this
paper, we address this gap, combining real multimodal traffic data with microscopic energy con-
sumption to analyze the network-wide energy consumption of electric mobility systems. Existing
vehicle energy consumption models can generally be classified as either macroscopic or microscopic
(Othman et al., 2019). Macroscopic models use a single value (i.e., energy per unit distance or
time) to roughly calculate the energy demand of vehicles. On the other hand, microscopic models
provide a more accurate estimation of energy consumption based on high-resolution driving profile
data; however, such data are not easily obtained, especially on a large scale. To overcome this,
some studies have used macroscopic fundamental diagram (MFD)-based traffic models to estimate
network-wide vehicle environmental externalities (e.g., CO2 emissions). The MFD describes the
well-defined relationships between network production, accumulation, and speed (Geroliminis &
Daganzo, 2008). Shabihkhani & Gonzales (2014) proposed an analytical model to estimate the
network emissions leveraging the relationship between MFD and the driving cycle. They fur-
ther evaluated this model in an idealized homogeneous network. Saedi et al. (2020) developed a
network-wide emission modeling framework by combining the network fundamental properties with
the microscopic emission model. This framework was applied to an urban network through sim-
ulation. Recently, Barmpounakis et al. (2021) combined large-scale drone data with the MOVES
emission model to establish the relationships between network accumulation, speed, and vehicle
emissions. They referred to this relationship as the emission-MFD. However, these studies only
focused on traditional fossil fuel-powered vehicles, and the impact of electrified technology on
network-scale energy consumption is still unclear.

In this paper, we focus on analyzing the network-wide energy consumption characteristics of
electric vehicles in a multimodal urban traffic context. We do so by utilizing a data-based ap-
proach, combining high-resolution vehicle trajectory data collected by a swarm of ten drones in
the central business district of Athens, Greece, during the pNEUMA experiment (Barmpounakis
& Geroliminis, 2020) with microscopic energy consumption models. This allows us to estimate
the large-scale vehicular energy consumption and further investigate the aggregated relationship
between network-wide energy consumption and macroscopic fundamental diagram dynamics. We
refer to this aggregation relationship as energy consumption-MFD, following the naming method
proposed in Barmpounakis et al. (2021). The analysis conducted in this paper paves the foun-
dation for optimizing the energy consumption and environmental footprint of electric vehicles in
multimodal traffic networks.

The reminder of this paper is organized as follows. In Sect. 2, we describe the pNEUMA dataset
and the data processing method. We also briefly introduce the microscopic energy consumption
models utilized for different vehicle types. In Sect. 3, we discuss the preliminary results on the
aggregated energy consumption at the multimodal urban network. In Sect. 4, we draw the main
findings of this paper.

2 Methodology

In this section, we first introduce the pNEUMA dataset and describe the data pre-processing
method. We then present the energy consumption models utilized for electric vehicles.

Data source and pre-processing

The pNEUMA experiment was conducted in the central business district of Athens, Greece,
in October 2018 (Barmpounakis & Geroliminis, 2020). This experiment collected nearly half a
million naturalistic vehicle trajectories in a 1.3 [km2] urban area using a swarm of ten drones
during morning peak hours (8:00 - 10:30) over four weekdays. Figure 1 shows the overview of
the whole study area and the subareas flown by each drone. The pNEUMA dataset records

2



 

Figure 1: Study area of the pNEUMA experiment and drone-assigned subareas and flight
routes (Barmpounakis & Geroliminis, 2020).

vehicle trajectory information in 0.04-second time intervals, including longitude, latitude, speed,
longitude acceleration, latitude acceleration, and timestamp. Due to the multimodal urban traffic
characteristics in the selected study area, six vehicle types are recorded in the dataset: car, taxi,
bus, motorcycle, medium vehicle, and heavy vehicle. In this paper, we focus on three vehicle types,
i.e., car, taxi, and bus.

Extensive pre-processing of the empirical dataset is necessary because measurement errors
were detected during the observation period of some drones. We follow the pNEUMA dataset pre-
processing method proposed by Hamm et al. (2022), removing the records in the last 2 minutes
of each drone flight from the dataset. In addition, we filter some unreasonable records based on
the mechanical properties of vehicles and the real-world driving conditions in downtown areas. For
example, bus records with instantaneous acceleration greater than 3.5 [m/s2], car records with
average travel speeds higher than 80 [km/h], and vehicle records with zero instantaneous speed
and acceleration throughout the whole trajectory (probably are parked vehicles).

Microscopic energy consumption modeling

According to the information reported in (Barmpounakis et al., 2021), during the pNEUMA
experiment in Athens, the fuel type of taxis and buses was diesel, and the fuel type of cars was
gasoline. For the analysis in our paper, we assume all three vehicle types are electric-powered,
yet they maintain the same behavior as that observed in the pNEUMA dataset. We adopt the
VT-CPEM (Virginia Tech Comprehensive Power-based Energy consumption Model) to calculate
the energy consumption of electric cars/taxis (Fiori et al., 2016). For electric buses, we use the
microscopic power-based energy consumption model (Ma et al., 2021). Both models belong to
the microscopic backward-looking longitudinal dynamic models, which estimate vehicles’ energy
consumption based on the calculation of tractive force. In particular, these models produce the
energy consumption in units of [kwh/km] and the instantaneous energy consumption in units of
[kw] using the instantaneous speed profile as the input. Such input data can readily be provided
by the pNEUMA dataset. Previous studies have widely utilized these models and demonstrated
their accuracy in estimating the energy consumption of vehicles in the urban traffic context (Ahn
et al., 2020; Ma et al., 2021). For the mathematical details of these models, interested readers
could refer to the above references.

It is also worth mentioning that road grade has a significant influence on the energy consump-
tion of electric vehicles (Liu et al., 2017). The city of Athens is surrounded by mountains, resulting
in relatively large terrain fluctuations. Therefore, the impact of road grade on vehicle energy con-
sumption should not be omitted. In this paper, we use the Shuttle Radar Terrain Mission (SRTM)
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digital elevation model to obtain road elevation information and then calculate the road slope
between every two consecutive records in the dataset (Farr et al., 2007).

3 Results and discussion

In this section, we describe the empirical results regarding two aggregated relationships in
the network, specifically, (i) the relationship between accumulation and network-wide total en-
ergy consumption; and (ii) the relationship between spatial mean speed and network-wide energy
consumption per distance traveled. Before showing the results, we discuss how we calculate the
network fundamental properties and network-wide energy consumption.

In this paper, we use vehicle trajectory data collected from 8:30 to 11:00 on October 24th. After
pre-processing the dataset as described in the previous section, we gathered records of 36282 vehicle
trajectories. Among them are 34820 trajectories of private cars and taxis and 1462 trajectories of
buses. We consider 1 minute as the time interval T for aggregating the MFD dynamics and energy
consumption results. For each time interval, the accumulation nr and the spatial mean speed of
cars vr (including private cars and taxis) in the network r are determined as:

nr =

∑Ncar

i=1 tti
T

(1)

vr =

∑Ncar

i=1 tdi∑Ncar

i=1 tti
(2)

where Ncar [veh] is the number of cars circulating in the network during the given time interval;
tti [s] is the time spent by car i in the network during the time interval, and tdi [m] is the distance
traveled by car i during the time interval.

The total energy consumption of car traffic in the network for each time interval is determined
as:

ECr =

Ncar∑
i=1

eci (3)

where eci [kWh] is the energy consumption of car i during the time interval.
The energy consumption per distance traveled [kWh/veh.km] is calculated with Eq. 4:

ECDr =
ECr∑Ncar

i=1 tdi
· 1000 (4)

Regarding the traffic dynamics and energy consumption of buses, we use the same equations
for calculations.

Macroscopic relationship between accumulation and total energy consumption

Figure 2 depicts the total energy consumption of cars and buses in the network as a function
of accumulation (i.e., energy consumption-MFD). The value of each blue or green data point in
the figure represents the aggregated energy consumption of cars or buses in the network over a
given period (i.e., 1 minute). For electric cars, we observe that when the accumulation is smaller
than 1600 [veh], the total energy consumption increases roughly linearly with the increase in
accumulation. This is because when the car traffic in the network is not heavy, the total energy
consumption of the system increases correspondingly with the number of vehicles in the network.
However, when the traffic conditions become congested, the additional effects of congestion make
the relationship between car accumulation and energy consumption non-linear (refer to the blue
points in Figure 2 (a) when the accumulation is larger than 1600 [veh]). This is because heavy
traffic leads to congestion and lower speeds, which means that cars spend more time traveling the
same distance. As a result, the energy consumed by cars in the network further increases. We
also observe that for electric buses, the total energy consumption shows a growing trend with the
increase in accumulation. Considering the empirical dataset has a limited range of obervations,
especially for public transport vehicles, our empirical enegry conusmption-MFD may only represent

4



the aggregated relationship between accumulation and total energy consumption during a part of
the network’s loading and unloading cycles.
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Figure 2: Correlation between total energy consumption and accumulation.

Macroscopic relationship between mean speed and energy consumption

Figure 3 depicts the aggregated relationships between average speed and the energy consump-
tion normalized for distance on a network scale. We observe that when the average speed is lower
than 10 km/h, the energy consumption of electric cars decreases with the increase in average speed.
However, this decreasing trend tends to be minimal, and the energy consumption of electric cars
is basically constant when the average speed is higher than 10 km/h. In contrast, the energy
consumption of electric buses significantly decreases as the average speed increases (at least within
the typical speed range for buses in the pNEUMA dataset). The different relationships between
mean speed and the energy consumption of electric cars and electric buses could be attributed
to their differences in vehicle configurations, such as motor power, vehicle mass, drag resistance
coefficient and rolling resistance coefficient. Electric cars are lightweight and aerodynamically effi-
cient, which results in approximately constant energy consumption over a wide range of speeds. In
comparison, electric buses are heavy and have high rolling resistance. As the speed increases, the
rolling resistance reduces, while the aerodynamic drag resistance only slightly increases, leading to
decreasing energy consumption.
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Figure 3: Correlation between energy consumption per distance traveled and spatial mean
speed.
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4 Conclusions

This paper extends the macroscopic fundamental diagram (MFD) to the energy consumption-
MFD by investigating the aggregated relationships between network traffic dynamics and the
energy consumption of electric mobility systems in a multimodal urban traffic context. We use
a data-based approach, combining naturalistic vehicle trajectories collected by a swarm of drones
during the pNEUMA experiment with microscopic energy consumption models. We assume all the
trajectories belong to electric vehicles yet maintain the same behavior observed in the pNEUMA
dataset. Preliminary results show that well-defined relationships exist between MFD parameters
and the energy consumption of electric vehicles (electric cars or buses) at a network level. The
total energy consumption of electric cars and buses in the network follows a linear relationship
with accumulation under uncongested traffic conditions. When the accumulation exceeds a certain
limit (e.g., 1600 [veh] for car traffic in the pNEUMA dataset), the additional effects of congestion
make the relationship between accumulation and energy consumption non-linear. We also show
that the energy consumption of electric cars decreases as the average speed increases when the
average speed is lower than 10 km/h and then tends to be relatively constant even though the
average speed further increases. For electric buses, their energy consumption exhibits an obvious
decreasing trend with the increase in average speed. These findings provide valuable insights into
understanding the network-wide energy consumption characteristics of electric vehicles. In the next
phase of our research, we propose to comprehensively analyze the energy consumption distribution
of EVs and traditional fossil fuel-powered vehicles across the entire network. On this basis, we
could accurately identify the energy consumption hotspots in the network and track the origin
of these hotspots. Furthermore, we will also leverage a simulation-based approach to generalize
our empirical results and explore viable strategies for mitigating energy consumption hotspots in
networks with both electric and fossil fuel-powered vehicles.
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