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SHORT SUMMARY

This paper introduces an integrated simulated annealing optimization method within the co-
evolutionary agent-based transport modeling framework MATSim, using a small illustrative ride-
pooling service as an example to optimize driver shift supply for a given and static demand.
Simulated annealing is a metaheuristic optimization algorithm that has already been employed
in a wide range of problems and domains. MATSim makes use of a co-evolutionary design in
which individual agents try to optimize their daily schedule by finding optimal transport options.
The iterative nature of both simulated annealing and MATSim’s co-evolutionary design makes
the implementation straightforward and compatible. The outcomes validate the feasibility of the
approach in optimizing specific components of the transport model and indicate its potential for
future use in comparable applications. The presented case of driver supply optimization may help
to design scenarios for new services and to better assess the efficiency and costs of such a service.

Keywords: agent-based transport model, demand-supply-matching, MATSim, on-demand mobil-
ity, operations research, simulated annealing.

1 INTRODUCTION

Transport systems are complex and involve various stakeholders, multiple modes of transportation,
and numerous decision-making processes. Agent-based transport models, such as MATSim (Multi-
Agent Transport Simulation, Horni et al. [2016), enable researchers to simulate and analyze the
behavior of individual travelers and their interaction in the context of the wider transport system.
The central feature of MATSim’s is a co-evolutionary algorithm that enables individual agents to
optimize their daily activity schedules through the identification of the most optimal travel options.
Consequently, the decisions made by one agent can have implications for every other agent, often
impacting shared resources such as road or bus capacity.

In numerous simulation studies, the supply side of the transportation system is treated as static
while searching for a stable demand equilibrium. Typically, the effects of alterations to the supply
side are analyzed across multiple simulations rather than within a single simulation. While this
approach is suitable for many use cases, there are situations where the supply side must also react
dynamically within the simulation. One example is the simulation of competing minibus operators
that do not operate on fixed schedules, but are instead demand-driven and can be modeled using
an evolutionary algorithm (Neumann) |2014). Other examples include public transport pricing and
supply planning (Kaddoura et al.l [2015), the implementation of traffic actuated or traffic adaptive
transport signals that dynamically respond to current traffic flows (Kiihnel et al., 2018)), the opti-
mization of charging infrastructure placement (Fadranski et al., |2023|) or tour planning in freight
applications (Zilske & Joubert| 2016|). An in-depth discussion about optimization problems in
(iterative) and stochastic simulation frameworks is given in (Flotterod, 2017)).

A prime example of an inherent necessity for supply-side optimization can be found in recent
demand-responsive transport (DRT) systems such as online ride-hailing and ride-pooling, wherein
an operator must dynamically respond to passenger requests. To address such cases, a central
dispatcher optimizes the fleet supply using various algorithms such as insertion heuristics (Ma-
ciejewski, 2016|) or integer linear programming (Alonso-Mora et al., [2017). A recent study high-



lighted the need for explicit simulation of operational aspects such as charging, hub facilities, and
driver shift supply to yield realistic results for current human-operated fleet operations in which
the drivers are employees of the operator (Zwick et al., [2022). This underscores the importance of
generating realistic driver shift plans that minimize operating costs while maintaining high-quality
service. For simulation studies without available historical data, or those subject to new policies
or other changing conditions, the driver shift plans must be scheduled to match the anticipated de-
mand. Given that these scheduling problems are typically NP-hard (Chuin Lau, [1996)), simulated
annealing (SA) has proven to be a valuable tool for addressing this challenge (Thompson, 1996).

SA is a metaheuristic optimization algorithm that has been applied across a range of domains,
including transportation, to address complex optimization problems. SA can be integrated with
co-evolutionary algorithms to optimize distinct facets of the transport system, as both approaches
share important similarities and fall into the category of general iterative algorithms (Youssef et
al.,|2001)). In this study, we provide a case illustration of SA employed within MATSim to optimize
the supply side of DRT systems in the form of driver shift planning, based upon initial findings
(Aroral [2021)).

We demonstrate that SA is well-suited for the iterative design of a co-evolutionary transport model
framework and can generate favorable outcomes for optimizing specific simulation components, as
exemplified by driver shift planning. The versatility of the SA approach lies in its adaptability
to various mobility-related optimization problems, including but not limited to DRT stop or hub
placement, charging strategies, traffic signal plans, or fleet sizes. Consequently, the generic SA
implementation within the MATSim framework will be made available as an open-source feature
to encourage further optimization research in the field.

2 METHODOLOGY

Based on the DRT extension by [Maciejewski| (2016) including its default re-positioning strategy
(Bischoff & Maciejewski, [2020|) and the operational aspects described in |Zwick et al.| (2022)) we
simulate a human-operated ride-pooling service in MATSim and use SA to optimize the driver
shift plan.

The general outline of SA is as follows:

1. Initialize the system with an initial solution Ag and set the initial temperature Ty (to a high
value).

2. Choose a candidate solution A; for iteration ¢ by making a perturbation to the current
solution.

3. Calculate the energy (or cost) difference between the candidate solution cost ¢();) and the
current accepted solution cost ¢(Ag).

4. If the energy difference is negative, accept the candidate solution as the new current solution.

5. If the energy difference is positive, accept the candidate solution with a probability P;();)
that depends on the current temperature 7; and the energy difference. This probability
decreases as the temperature decreases and is designed to allow the algorithm to escape
from local minima.

6. Decrease the temperature according to a cooling schedule.

7. Repeat steps 2-6 until the stopping criterion is met (e.g., a maximum number of iterations
is reached).

The acceptance probability in step 5 is calculated as:

k-(c(A;)—c(Aa
—( (e(Aj)—¢e( ))

(1)

Multiple cooling schedules exist to adjust temperature T;. In this study we use an exponential
multiplicative schedule:

Pi(\i) =e

T, = Ty * o, (2)



with a constant 0 < a < 1.

In our application of optimizing driver shifts, we assume an infinite pool of drivers and limit the
optimization to a single day. Shifts s are characterized by their start and end times and are of a
fixed duration ¢4 ¢ of either 5 or 8 hours. An 8-hour shift requires a mandatory break of duration
ty,s= 60 min, which must occur no earlier than 3.5 hours and no later than 5.5 hours into the shift.
The solution A is defined as a shift plan, i.e., the set of n shifts A = {s1,s2,...,8,}.

For the cost function, we propose a function that

1. sums up the driving hours of all shifts (shift durations ¢4, minus optional break durations
tp,s) and multiplies it with the cost per operational hour 6,

2. subtracts from the costs the sum of revenues ¢, of all served rides r € R(\) served with
solution A,

3. adds a penalty 6 for each time bin ¢ in which the rejection rate n) was greater than a
predefined threshold 7,,,44:

c(N) =9~th7s —tps — Z €r+zr(tv/\) -0, (3)

SEA reR(N)

1 t) > -

with T(t,3) = - A1) > o (4)
0 otherwise

For the revenue of a ride, we propose a generic cost function that consists of a base fare 5y and a

distance-dependent price per kilometer SBg.m,:

€r = BO + Bkm ' dT‘7 (5)

where d, is the distance of ride r.

For step 2 of the algorithm, multiple perturbations were defined to allow an extensive but guided
exploration of possible solutions:

Add shift This strategy randomly adds a new shift to the shift plan by drawing from a weighted
random distribution of possible time spans. Using a sliding window approach, each possible
time span over time bins ¢ gets a weight that relates to the request rejection rates n(t) of
the iteration of the last accepted solution. The more rejections a possible time span covers,
the higher the probability of being selected. The time spans have fixed durations of either 5
or 8 hours, which are the two possible shift durations employed in this study.

Remove shift This strategy randomly removes a shift from the plan. Similar to the add shift
strategy, a weighted selection from existing shifts in the plan is performed. Here, the weight
is calculated by the efficiency of the shift, defined as the ratio of revenue earned over the cost
of the shift (duration times the cost per hour) during the last accepted solution’s iteration.

Move shift This strategy randomly moves the start of a shift forwards or backwards in time.
The time difference is randomly drawn from a uniform distribution and respects the service
times of the service.

Duplicate shift This strategy randomly duplicates an existing shift, by drawing from a weighted
distribution. Similar to the removal of shifts, the weights are defined by the efficiency of a
shift during the last accepted solution’s iteration, with more effective shifts being more likely
of being duplicated.

Change shift duration This strategy changes the duration of an existing shift by randomly
choosing between a 5- and an 8-hour shift.

The SA is implemented in parallel to MATSim’s usual iterative cycle as shown in figure[ll The mo-
bility simulation is used in both, the SA algorithm and MATSim’s standard demand co-evolution
and represents the joint environment to allow the evaluation of the solution (set). The actual eval-
uation (i.e. scoring/cost updates) and preparation of new solutions (replanning/solution update)
are performed in separate cycles. The solution update includes the cooling schedule, the decision
for accepting the latest solution and perturbing the accepted solution. For the present study, we



assume the demand to be static and only optimize the driver shift plan given a fixed demand to
show the applicability of the approach. Thereby, the simulation framework mimics an iterative
traffic assignment model for fleet simulation only, ignoring any additional modes such as private
cars.
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Figure 1: Updated MATSim cycle adapted from [Horni et al.| (2016)) to include the imple-
mented simulated annealing cycle which runs in parallel to the original MATSim cycle.

To test our implementation, we make use of a small existing scenario for the city of Holzkirchen

in southern Bavaria, Germany. The scenario has been described by [Zwick et al. (2021) and is
available open sourceﬂ The temporal distribution of DRT requests is shown in figure
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Figure 2: DRT requests over the time of day in the Holzkirchen scenario (Zwick et al.

2021)

In total, we let the simulation run for 300 MATSim iterations. As the rebalancing algorithm of the
DRT also needs to adapt to previous iterations, we apply a ratio of 2 MATSim iterations per SA
iteration. In addition, we choose to have 3 SA iterations per cooling cycle (making it 6 MATSim
iterations per cycle). The best solution found over all iterations will be fixed for the last 3 iterations
and serves as the final output. The initial temperature Tj is set to 1,500 and « to 0.85. In every SA
iteration, we randomly choose between 1 and 10 perturbations from the strategies defined above.
The cost per driver hour 6 is set to EUR 30, to assume somewhat realistic costs of bus drivers,

"https://github.com/matsim-org/matsim-1libs/tree/master/examples/scenarios/holzkirchen


https://github.com/matsim-org/matsim-libs/tree/master/examples/scenarios/holzkirchen

including some overhead (Frank et al.l [2008). The cost penalty § equals EUR 50, which has been
found to be a good value to ensure minimum service level, with the rejection rate threshold 7,44
set to 0.15. On the revenue side, we choose Sy = 5 FUR and By, = 0.7 EUR/km. The values
given above do not reflect a coherent business case and are chosen for illustrative purposes. The
shift breaks are not part of the optimization in this study, although perturbations on their time
windows would also be possible. The initial shift plan is a manually created plan with a lot of
oversupply (see iteration 0 in figures |4| and . In total, a maximum of 20 DRT vehicles may be
employed in the simulation.

3 RESULTS AND DISCUSSION

The figures presented below illustrate the progression of solution quality and associated costs.
Figure [3] displays the initial, accepted, current, and best overall costs across iterations, as well as
the temperature curve that depicts the cooling schedule. The initial solution is characterized by
high costs resulting from a considerable oversupply. In the first few iterations, the costs improve
considerably and converge towards a minimum of approximately -1334 EUR. The erratic behavior
of the current cost curve indicates that the algorithm is searching around the accepted solution
space. The accepted cost curve reveals that, particularly around iteration 100 when the tempera-
ture remains high, the current accepted solution may be allowed to be inferior to a prior solution
from earlier iterations. In general, the asymptotic nature of the curves suggests a relatively stable
and optimized solution, which the algorithm reached in iteration 232.

It is worth noting that negative costs indicate a profitable service, as revenues exceed driver costs.
However, the cost and revenue factors presented here are for illustrative purposes only and may
not accurately reflect actual scenarios. Additionally, the fixed demand in the Holzkirchen scenario
was estimated based on the assumption of an autonomous service with lower cost factors.
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Figure 3: The different cost values (in EUR) and temperature over the course of the
simulation.

Figure [] depicts six plots of shift histograms and rejections at different iterations during the sim-
ulation. The algorithm aims to minimize driver hours by limiting the number of rejections to
below a specified threshold. In the initial iteration, shifts are evenly distributed throughout the
day, resulting in few rejections. Subsequent shift histograms exhibit a more detailed shift schedule
with fewer total shifts. The final shift setup displays a significantly reduced shift histogram with
an acceptable rejection rate (overall rejection rate of 4 %). The plots illustrate that the algorithm
occasionally adds meaningless shifts randomly, such as shifts starting at midnight in iteration 60,
which are subsequently eliminated. Additionally, the final shift plan is consistent with the demand
pattern in figure 2] with a noticeable peak around 5 pm. In this hypothetical scenario, it shows
that a fleet size of around 10 vehicles may be sufficient.

Figure [5] illustrates the vehicle occupancy at the same six iterations as the shift histograms in
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Figure 4: Shift histograms and rejections over the iterations 0, 60, 120, 180, 240 and 300.
Each vertical line represents a rejected request. The blue and black lines depict the number
of active shifts and shift breaks, respectively.

figure ] The occupancy plot for iteration 0 reveals that too many shifts were scheduled given the
demand, with "STAY" indicating vehicles on shift without tasks. A similar yet less pronounced
pattern is present in iteration 60. In contrast, the shift schedules in iterations 240 and 300 demon-
strate an efficient utilization of shifts based on demand, indicating that the algorithm has likely
found a satisfactory solution to the problem.

Iteration O Iteration 60 Iteration 120

20 20 20

16 16 18
312 | 8 12 82
E El El
© ® ©
L5 | ] . S s - e

4 ¥ 4 i 4 ! -

0 o el i el B P PRS0 VP S PRTICE T Y Tl . 0 r bl il D

0 10 20 30 0 10 20 30 0 10 20 30
Time [Hours] Time [Hours] Time [Hours]
Iteration 180 Iteration 240 Iteration 300

20 20 20

16 16 18
8 1z 8 12 812
=2 =2 2
B L B

4 b 4 . 4 !

N R B O P N R T L i e o o fipbbib bl ool b -

0 10 20 30 0 10 20 30 0 10 20 30
Time [Hours] Time [Hours] Time [Hours]
WAIT_FOR_SHIFT STAY 2pax 5 pax
State SHIFT_CHANGEOVER 0 pax 3pax 6 pax
SHIFT_BREAK 1 pax 4 pax

Figure 5: Occupancy plots over the iterations 0, 60, 120, 180, 240 and 300. It shows
the distribution of vehicle states over the time of day, including the number of boarded
passengers.

4 CONCLUSIONS

In conclusion, the results presented in this study demonstrate the applicability of the simulated
annealing algorithm for the given problem. However, it is important to note that these results are
only illustrative and require further refinement of input parameters, particularly in relation to driver
costs, revenues, and demand. In addition, the cost optimization could be extended to also include
other operating costs such as the distance-dependent costs of electricity for electric vehicles. Given
that one can also infer the maximum amount of simultaneously operating vehicles one can also
estimate the number of required vehicles in the fleet. Given the unpredictable nature of demand,
an approximate and valid solution of supply is sufficient for the problem, which supports the idea
of using heuristic approaches such as SA. Future research should focus on exploring adaptive and
co-evolving demand, testing larger and realistic scenarios, and optimizing other components of
the simulation to improve the accuracy of the results. The findings presented here may also be
transferable to other iterative transport models.
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