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Short summary

Bayesian Networks (BNs) are probabilistic graphical models representing conditional dependencies
existing between variables of interest. Recent studies have employed BNs for population synthesis
and daily activity plan generation. Those studies highlight the ability of BNs to efficiently de-
tect the causality links between variables in an easily interpretable way. This short paper aims
to propose a further application of BNs for both population and daily activity plan synthesis in
Switzerland. We show that understanding the dependency structure linking the population charac-
teristics and its mobility behaviour is key to generating representative synthetic activity patterns.
Furthermore, we lay the foundations for the development of temporally transferable travel demand
models.
Keywords: Activity-based modeling; Bayesian networks; Synthetic Populations; Travel demand
generation;

1 Introduction

According to Rasouli & Timmermans (2014), three main categories of activity-based models have
been developed since their emergence in the late 60s (Chapin, 1968): constraint-based models
(Jones et al., 1983), rule-based models (Arentze & Timmermans, 2000; Guan et al., 2003) and
utility-maximization frameworks (Ben-Akiva & Bowman, 1998). Virtually all of them are depen-
dent on a synthetic population: the quality of the outputs of the activity-based models is highly
dependent on the quality of the input population. This is why Rasouli & Timmermans (2014)
conclude their review paper by leading the research community towards the development of be-
haviourally rich models allowing the investigation of causality rules.

Approaches based on Markov processes, initially implemented for population synthesis (Farooq et
al., 2013) are a step toward this direction. However, the approaches developed in this paper require
the researchers to prepare manually the full set of conditional distributions. Sun & Erath (2015)
address this issue and introduces Bayesian Networks (BNs) as an efficient tool for population syn-
thesis. This first study was replicated and expanded by Joubert (2018). The first application of
BNs for activity pattern generation was proposed by Joubert & De Waal (2020) and extended in
de Waal & Joubert (2022). In these studies, the authors focus on the working population of Cape
Town, South Africa, and show that their mobility behaviour is linked to the individuals’ age, and
employment status and to their owning a car and a driving license. All those studies show that
BNs avoid over-fitting and scalability issues without being trapped by the curse of dimensional-
ity. Moreover, they are easily interpretable and can detect complex dependency structures. They
can create unobserved patterns, contrary to frequentist approaches, and allow the combination of
multiple data sources into one single model. Thus, BNs appear as a promising approach in the
domain of travel demand generation.

In this short paper, we propose to apply this methodology and open-source software to generate
a synthetic population and its daily activity patterns. Our main contributions will be the follow-
ing: first, develop a model linking population synthesis and activity chain generation using BNs;
and, second, highlight the advantages of BNs compared to statistical matching in a “forecasting”
experiment.
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2 Methodology

Data

The Micro-census - Mobility and Transport (BFS, 2015) (referred to afterward as MZMV) is a
travel survey conducted by the Swiss Federal Office of Statistics every five years. For this study,
we focus on the 2010 and 2015 releases. For each edition, around 1% of the Switzerland resident
population above the age of 6 is asked to report on their mobility on a certain day: for each of their
trips, they have to provide information (among others) about the travel time and distance, the
chosen transport mode and the trip purpose. Information about the respondents themselves and
their households is collected too. Personal attributes include age, gender, driving license ownership,
employment status and level of education, while the household description provide insights into
the household size, structure and monthly income. Each observation (household, person, trip) is
weighted. In the following, we consider the persons’ weights as the focus lies on the individuals’
complete activity chains. The trips data set allows us to reconstruct the individuals’ activity
chains.
After cleaning and removing incomplete trip data, the data set contains 50 576 personal records
for 2015 and 57 087 for 2010. Those individuals reported 170 541 trips in 2015 and 190 308 in 2010
(average number of trips per respondent: 3.37 in 2015 and 3.33 in 2010). Both data sets contain
around 3 000 distinct records of activity chains (2 880 in 2015 and 3 054 in 2010). The maximum
activity chain length observed in the data set is 22, and 95.5% have a length lesser or equal to 7.
Thus, to keep the BN structure concise and follow the approach of Joubert & De Waal (2020), we
focus only on the observations where the activity chain length is not greater than 7.

Bayesian Networks

Bayesian Networks (Jensen et al., 1996) (BNs) are probabilistic graphical models consisting of
two parts: a structure - one of a directed acyclic graph in which the vertices represent random
variables, and the edges correspond to dependency links between the vertices - and parameters,
which are joint probability tables encoding the probability distribution of the random variables.
The structure and the parameters are estimated from the data or manually defined by an expert.
The two approaches can complement each other. Learning the structure of a BN is an unsupervised
learning problem. In this study, we use Python 3.9.7 and the library pgmpy (Ankan & Panda,
2015). An implementation of the Hill-Climb search algorithm (Selman & Gomes, 2006) based on
the Bayesian Dirichlet equivalent uniform (BDEU) score (Heckerman et al., 1995) is used for the
network structure estimation. The parameter learning is based on a maximum-likelihood estimator
(White, 1982).

Learning the BN structure

Our goal is to compare the BN approach with the statistical matching algorithm (D’Orazio et al.,
2006), which was implemented in the Switzerland eqasim scenario (Hörl & Balac, 2021a). Because
of constraints inherent to this scenario, all activity chains not starting or not ending at home had
to be removed from the data set. The base idea behind statistical matching is to link each agent
with one activity chain record based on the weight and five socioeconomic attributes: age class,
household size class, municipality type, sex, and marital status (Hörl & Balac, 2021b). Those
attributes are usually obtained from national censuses, which only report a limited set of such
socio-economic variables. For the BN estimation, three other attributes are included: the monthly
household income, the respondent’s employment status, and their ownership of a driver’s license.
Two main classes of variables are thus considered: the socioeconomic variables, among which are
the five matching attributes, and the seven activities forming the activity chain.
Most of the BN’s structure was estimated from the data, yet we imposed the following constraints.
First, the five attributes mentioned above (age class, household size class, municipality type, sex,
and marital status) are seen as “root” nodes in the network. This means that they cannot have
parent variables. Second, we are interested in detecting how socioeconomic attributes influence
activity chains. Consequently, we impose that an “activity” node can only influence the following
activities. Finally, to sample a synthetic population from the BN, we generate a new activity chain
for each observation – consisting of the set of socio-economic attributes – present in the training
data set using the conditional probability tables estimated in the previous step.
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3 Results and discussion

Replicating a given distribution

The first experiment aims to verify that the proposed travel demand generation approach is able
to replicate a given activity chain distribution. Only the most recent release of the MZMV is used.
The structure of the learned Bayesian Network is depicted in Figure 1. One can distinguish two
“layers” in the network: on the top are socio-economic variables while the activities are on the
bottom. The employment and the driving license ownership connect the two parts of the network,
which is similar to the findings of Joubert & De Waal (2020). Figure 2a shows the comparison
between the activity chain distributions. Dark blue bars represent the prevalence of activity chains
sampled from the Bayesian Network while gray bars correspond to the distribution computed
from the input data. Light blue bars represent the activity chain prevalence distribution obtained
from statistical matching. The comparison shows that the statistical matching replicates almost
perfectly the input distribution, which is confirmed by a Wasserstein distance (Vallender (1974))1
between the two distributions of around 0.09. The distance between the distribution sampled from
the BN and the input data is higher (around 0.12), which we can observe on Figure 2a by the
larger gaps existing for some activity chains, such as the under-represented “h-w-s-h” or the over-
represented “h-w-h-w-h”, using the abbreviations of activity names introduced in Figure 2. Still,
those differences disappear when we focus on the aggregated count of activities, as represented in
Figure 2b.

Figure 1: Bayesian Network structure.

Consequently, both Bayesian Networks and statistical matching are suitable methods when it
comes to replicating a given distribution of activity chains. The relatively weaker performance of
the BN, which we pointed out while computing the Wasserstein distances, can be explained by its
ability to generate unobserved activity chains: looking at all the activity chains generated by the
BN, regardless of their prevalence, 47.3% of them are absent from the training data set and were
“created” by the BN. However, those activity chains are very rare and represent only 5.4% of the
agents’ daily plans. An advantage in favor of the BN approach yet seems to stand out when one
combines data sources from different time contexts, as the next experiment shows.

1Here, instead of considering the entire range of activity chains, we take into account only the 50 most
prevalent activity chains, so as to ensure that all activity chains are observed a minimal number of times.
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(a) Most prevalent activity chains in the MZMV 2015, obtained from
statistical matching and sampled from the BN.

(b) Percentage of activity chains containing at least one activity of
each purpose.

Figure 2: Activity chain distribution and prevalence of each activity type. The six activities
considered in this study are the following: home (h), work (w), education (e), leisure (l),
shopping (s) and other (o).
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Table 1: Accuracy, precision and F-score of the Bayesian Networks and of the Statistical matching
approach

Chain
MZMV
2015
prevalence

BN
prevalence

Statistical
matching
prevalence

BN Statistical matching

Accuracy Precision F-score Accuracy Precision F-score
h 10.7% 10.3% 10.6% 82.7% 18.0% 17.6% 82.2% 16.4% 16.3%
h-w-h 9.5% 8.5% 8.1% 85.0% 17.6% 16.6% 84.7% 14.5% 13.3%
h-l-h 5.5% 5.3% 5.5% 90.0% 6.9% 6.7% 89.8% 6.8% 6.8%
h-s-h 5.3% 5.7% 5.9% 90.1% 9.5% 9.9% 89.8% 8.1% 8.5%
h-h 2.6% 2.5% 2.7% 95.0% 2.8% 2.8% 94.9% 2.9% 2.9%
h-w-h-l-h 2.3% 2.0% 2.2% 95.9% 3.9% 3.6% 95.6% 3.4% 3.3%
h-w-h-w-h 1.8% 2.6% 2.4% 95.8% 2.7% 3.2% 95.9% 2.7% 3.1%
h-w-s-h 1.8% 1.3% 1.9% 97.0% 2.9% 2.3% 96.5% 4.7% 4.7%
h-s-h-l-h 1.7% 1.7% 1.7% 96.7% 3.5% 3.5% 96.7% 1.5% 1.5%
h-e-h 1.6% 1.4% 1.3% 97.3% 10.6% 9.9% 97.3% 7.3% 6.7%
Average 90.3% 9.8% 9.6% 90.1% 8.6% 8.4%

Towards temporally transferable travel demand generation models

In this second experiment, the BN is estimated using the older release of MZMV, dating back
to 2010, while, as in the previous experiment, the population for which we generate the activity
chains is the set of respondents of MZMV 2015. The obtained network has the same structure as
the one depicted in Figure 1; however, the conditional probability tables changed as the training
data set is different. To generate the corresponding data with the statistical matching algorithm,
activity chains extracted from MZMV 2010 were matched to MZMV 2015 respondents.

Aggregated performance indicators: Similarly as before, the aggregated performance of both
approaches can be measured with the Wasserstein distance. The distance between the activity
chain distribution estimated from the BN and the one from the MZMV 2015 is 0.172, almost ex-
actly the same as the distance from the statistical matching distribution and the reference data,
which is 0.171. This shows that, although the BN method has a disadvantage because it is able
to generate unseen activity patterns, it can compensate it by better reacting to changes in the
socio-economic structure of the population, such as those one can observe between the two releases
of MZMV.

Disaggregated performance indicators: Beyond the Wasserstein distance, disaggregated indi-
cators such as accuracy, precision and F-score can be used to compare the performance of the two
approaches. Those indicators are presented in Table 1 for the 10 most prevalent activity chains;
the averages are related to the 15 most prevalent activity chains. The three indicators show similar
values to the ones presented in Joubert & De Waal (2020) and de Waal & Joubert (2022). More-
over, they show that the BN approach outperforms in almost all cases the statistical matching
algorithm.

Discussion

A detailed analysis shows that those better results are mostly linked to the fact that the BN
captures with a higher accuracy the links between the population characteristics and its activity
chains. More precisely, the statistical matching algorithm cannot be implemented using more than
a few matching attributes, as explained in Hörl & Balac (2021b), and those attributes must be
chosen by the researchers. Figure 1 highlighted that the employment status and the ownership of
a driving license, which are not used for matching in Hörl & Balac (2021b), are directly influencing
the mobility behavior. In the previous experiment, the fact that those variables were extracted
from the most recent release of the MZMV thus led to improved results. To confirm this, a similar
experiment was realized without sampling those two attributes from MZMV 2015: the distributions
were kept unchanged compared to MZMV 2010. The average accuracy, precision and F-score are
presented in Table 2. The table shows that, in this case, the BN approach is outperformed by
statistical matching. Consequently, the BN identified which attributes are linking the population
characteristics with its observed mobility behavior, which results in a more representative synthetic
travel demand.
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Table 2: Average accuracy, precision and F-score, over the 15 most prevalent activity chains, obtained
with the statistical matching algorithm, the BN method using non-matching attributes and without using
the non-matching attributes.

Accuracy Precision F-score
BN with employment status and driving license 90.3% 9.8% 9.6%
BN without employment status and driving license 90.0% 8.4% 8.2%
Statistical matching 90.1% 8.6% 8.4%

4 Conclusions

This short paper presents an application of Bayesian Networks for synthetic population and travel
demand generation. Contrary to Joubert & De Waal (2020), who focus on the employed population
living in Cape Town, we can synthesize agents representative to the Swiss people, except for children
below six years of age. This study is based on open-source software. We used both aggregated
and disaggregated indicators to evaluate our approach. We showed that BNs could accurately
replicate a given activity chain distribution and outperform the statistical matching algorithm
when combining two data sources in a “forecasting” experiment. We highlighted that the ability
of BN to identify the critical socio-economic attributes influencing the activity chain is of great
help to generating representative synthetic population and travel demand. Several points indicate a
potential for future research: this study will first be extended to include experiment results obtained
from the 2005 release of MZMV. Moreover, the networks were estimated using a combination of
data-driven, machine-learned methods and expert knowledge, as some constraints about the links’
directions were imposed. It would thus be relevant to conduct sensitivity analyses to evaluate the
impact of imposing these constraints. A third possible future research direction is to estimate
networks specific to given socio-economic categories. In this way, one could capture and represent
the differences in dependency structures and ultimately contribute to the understanding of social
mechanisms leading to heterogeneity in mobility behaviour.
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