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Short summary

Understanding the capacity of runway system under different operational conditions is of critical
importance to airport operators and planners. The availability of granular data on day-to-day
runway operations facilitates the development of models that allow a precise comprehension of
runway capacity. However, the exercise is empirically challenging due to statistical biases that
emerge via the complex interactions between air traffic control and runway capacity. This paper
develops a novel causal statistical framework based on a confounding-adjusted Stochastic Frontier
Analysis (SFA) to deliver estimates of runway capacity and its parameters that are robust to such
biases. The model captures the key factors and interactions affecting runway capacity in a com-
putationally intensive manner. The performance of the model is demonstrated via benchmarking
of the estimated capacities of three major airports around the world.

Keywords: Airport operations; Runway capacity; Empirical estimation; Confounding; Causal
statistical modelling; Stochastic frontier analysis.

1 Introduction

Runway capacity, the maximum number of aircraft movements that a runway system in an airport
can operate in a given time period, is a primary input to air traffic management and planning
(De Neufville et al., 2013). Knowledge of runway capacity supports decisions in planning and
operations, including (1) distributing the daily runway demand over the available runway capacity
(that is, available slots) (Gilbo, 1993; Cheung et al., 2021), (2) modeling airport delay or even delay
propagation within the airport network (Pyrgiotis et al., 2013), and (3) appraising investments in
runway capacity expansion (Hansen, 2004), among others. By nature, runway capacity is highly
dynamic because it is determined by various time-varying operational factors such as weather
conditions, runway configuration, and fleet mix (Ashford et al., 2011). However, even after many
endeavors to estimate runway capacity, the literature lacks methods that can robustly quantify
its dynamic nature, while being less resource-intensive in terms of time, labour, data, and other
monetary requirements (such as expenses for a software license). This study attempts to address
this gap by developing a model to precisely estimate runway capacity and the parameters of its
associated factors.
Previous models of assessing runway capacity can be grouped into four main categories: (1) table
lookup and spreadsheet (FAA, 1983; TRB, 2012), (2) analytical (Blumstein, 1959; Cheung et al.,
2017; Mascio et al., 2020), (3) simulation (Bubalo & Daduna, 2011; Kuzminski, 2013; Barrer et al.,
2005), and (4) empirical (Gilbo, 1993; Hansen, 2004; Kim & Hansen, 2010; O’Flynn, 2016; Kim
et al., 2015). The first two categories of models carry several assumptions on runway operations;
such as the absence of airspace constraints and the control of air traffic controllers; that seldom
hold true in practical airport operation conditions. Simulation models offer the flexibility to un-
derstand the dynamic nature of runway capacity under different operational scenarios. However,
the construction of such varying scenarios requires highly granular data on time-varying factors
such as air traffic control regulations, which are often difficult to obtain. Moreover, the high cost
in time, money and human resources (well-trained programmers) make simulation models remain
frequent use only in big and hairy projects (such as detailed airfield design) rather than assessing
runway capacity solely. Empirical models provide the ability to understand runway capacity in
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the least data-hungry manner. Such models derive estimates of capacity from data on historical
throughput that implicitly represent varied operational conditions. Nonetheless, we highlight that
estimating capacity from the throughput data is not straightforward as there are external unob-
served (unquantifiable) factors such as air traffic control regulations, that are correlated with both
capacity and its observed determinants (such as the mix of aircraft served). We note that state-of-
the-art empirical approaches in the literature, such as censored regression, fail to adjust for such
unobserved sources of confounding, which limits their ability to provide a statistically robust and
reproducible characterisation of runway capacity.
To fill these research gaps, we propose an empirical method to estimate runway capacity by em-
ploying a causal statistical approach, confounding-adjusted SFA, first developed by Karakaplan &
Kutlu (2017); Karakaplan (2022) and further applied in Karakaplan & Kutlu (2019); Ojo & Baiye-
gunhi (2020); Xu et al. (2022). The proposed model uses historical throughput as the dependent
variable and associated operational condition factors as covariates. Demand and delay are intro-
duced in the inefficiency to determine the deviation from throughput to capacity. The adopted
SFA delivers estimates of runway capacity by constructing a confounding-robust throughput fron-
tier. The confounding biases originate due to either the correlation between observed operational
condition factors and unobserved operational condition factors in random error, the correlation
between inefficiency and random error, or both. To the best of our knowledge, this study presents
the first application of causal statistical modelling in empirical estimation of runway capacity. Fur-
ther, we apply the proposed model to three major airports around the world by making use of
data on their day-to-day operations in 2018 as maintained by the Airport Benchmarking Group
(ABG) within the Transport Strategy Centre (TSC) at Imperial College London Airport Bench-
marking Group (n.d.). The corresponding weather records are sourced from Weather Underground
Weather Underground (n.d.), Visual Crossing Visual Crossing (n.d.) and ECMWF Reanalysis v5
Copernicus Climate Change Service (n.d.). Based on these high-granular and large-scale data, the
estimates of parameters for operational factors provide insights into how these factors contribute
to changes in runway capacity. Additionally, the reliability of our runway capacity estimates is
validated by comparing them against reported data from table lookup and spreadsheet in FAA’s
Advisory Circular Report 150/5060-5 FAA (1983) and Eurocontrol’s Airport Corner Eurocontrol
(n.d.); and testing statistically via censored regression Kim & Hansen (2010). Such accurate es-
timates of runway capacity under specific operational conditions facilitate air traffic controllers a
better understanding of the capacity under these conditions and further decisions.

2 Data and Variables

Data

To estimate the runway capacity, we use large-scale and high-granular operational data for three
congested airports provided by the ABG of TSC at Imperial College London. Because of data
confidentiality, these three airports are anonymous in this study, denoted as A, B, and C. For
each airport, the data provide detailed records for all aircraft movements in 2018, including sched-
uled and actual arrival and departure time, aircraft type, allocated runway and gate, and number
of passengers. Such high-granular data including individual flight records ensure the metrics for
operational factors are as close to what happens in actuality as possible Kim et al. (2015). The
historical weather data for these airports are sourced from Weather Underground Weather Un-
derground (n.d.), Visual Crossing Visual Crossing (n.d.) and ECMWF Reanalysis v5 Copernicus
Climate Change Service (n.d.).
Based on these raw data, we construct panel data for each airport such that cross-sectional unit
i = 1, 2, . . . , N is defined as a time interval with 15 minutes length in a week and temporal unit
t = 1, ..., T is the weeks in 2018. These time intervals are particularly sampled from the peak
hours (10 am - 8 pm) on weekdays in a week since night hours, some holidays, and other off-peak
periods are typically times of low traffic demand, which should be excluded for capacity estimation
and delay performance evaluation Gelhausen et al. (2013). Therefore, we calculated the relevant
variables on the basis of all individual flights that are recorded to be served in the runway system
during each quarter-hour.
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Variables

In this section, we introduce the dependent variable (throughput), frontier variables (factors deter-
mining capacity), and environmental variables (factors determining inefficiency) for the confounding-
adjusted SFA, summarized in Table 1. The frontier is the capacity, determined by various frontier
variables. These factors are categorized into airport design factors (such as active runway layout
and the number of runway exits), aircraft movement characteristics (such as arrival rate and fleet
mix), environmental factors (such as visibility, ceiling, precipitation, density altitude, crosswind
speed, headwind speed, tailwind speed), and air traffic control factors (such as separation gap,
ATM procedures, and air traffic controllers’ behaviors) Ashford et al. (2011). Inefficiency, the
deviation from the frontier (capacity) to dependent variable (throughput) is explained with two
environmental variables, delay, and demand. Delay has a positive effect on inefficiency since the
runway system cannot be fully utilized as scheduled when scheduled flights are delayed Diana
(2021). Throughput is the minimum value of capacity and demand. When demand is low during
off-peak hours or in less congested airports, airport efficiency, and throughput decrease as follows
Hansen (2004).

Table 1: Variables for confounding-adjusted SFA

Category Factor Definition Data source
Output Throughput The number of aircraft that are served in the runway

system
ABG

Frontier
variables

Arrival rate (%) The ratio of actual arrivals to actual departures ABG
Fleet mix (%) The percent of large aircraft plus three times the percent

of heavy aircraft
ABG

Runway layout An ordinal variable to represent the active runway lay-
out

ABG

Number of runway exits The average number of runway exits of this active run-
way system

ABG

Separation gap (s) The average spacing time between leading and trailing
aircraft

ABG

Precipitation (mm) The product of the condensation of atmospheric water
vapor that falls under gravitational pull from cloud

Visual Crossing

Visibility (miles) The distance at which an object or light can be clearly
discerned

Visual Crossing

Ceiling (ft) The height of the lowest clouds that cover more than
half of the sky

ECMWF Reanalysis
v5

Density altitude (ft) The pressure altitude corrected for temperature Weather underground
Crosswind speed (mph) The average crosswind speed Weather underground
Headwind speed (mph) The average headwind speed Weather underground
Tailwind speed (mph) The average tailwind speed Weather underground

Environmental
variables

Delay (min) The average flight delay for both arrival and departure
flights

ABG

Demand The number of aircraft that are scheduled to be served ABG

However, some frontier variables, such as the behaviors of air traffic controllers and the regulation
rules they decided on are difficult to observe and estimate in empirical data. Therefore, the complex
correlations between these unobserved frontier variables and other observed frontier/environmental
variables result in confounding biases. In Figure 1, we use the level of air traffic control (ATC) to
represent the air traffic controllers’ preferences and regulation rules. For example, first-come-first-
serve (FCFS) is a common discipline to serve the aircraft in the runway system, while quite often,
air traffic controllers loosen (decrease) the level of air traffic control and process a sequence of
arrivals first and insert departures without disturbing the arrivals flow, which increases the runway
capacity De Neufville et al. (2013). Therefore, when the level of ATC is tight (increase), the
runway capacity decreases and arrivals would be served as a priority. The downward bias observed
in the effect of arrival rate on runway capacity is due to confounded with the effect of ATC on
runway capacity. The fleet mix also has a negative effect on runway capacity, while the increase
in ATC might cause either a decrease or an increase in the fleet mix depending on the behaviors
of air traffic controllers. Therefore, the effect of fleet mix on runway capacity would have either
an upward or downward bias. The positive effect of delay on inefficiency is explained by non fully
utilized runway system when scheduled flights are delayed. The inefficiency also increases when
ATC becomes strict. Therefore, the estimated causal effect of delay on inefficiency experiences an
upward bias when the unobserved ATC cannot be handled properly.
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Figure 1: Causal relationships between variables

3 Methodology

To address the confounding biases discussed above, we employ a confounding-adjusted SFA, which
allows the existence of a correlation between frontier variables/environmental variables and random
error Karakaplan & Kutlu (2017); Karakaplan (2022).

yit = cit − uit + vit, where cit = xfitα (1)

uit = exp(xuitβ)ui (2)

xen
it = zitγ + ϵit (3)

The confounding-adjusted SFA under a panel data specification is developed in Equation 1, where
unit i = 1, ..., N is the set of all 15 minutes length time intervals in a week; time t = 1, ...T is the
set of weeks. yit is observed throughput for time interval i at week t. The deviation of throughput
yit from latent capacity cit is the sum of negative inefficiency −uit and random error vit. As
we review in Section 2, runway capacity is determined by multiple airport operational condition
factors. Therefore the latent runway capacity cit is expressed as a function of a vector of airport
operational condition factors, frontier variables, xfit and α is a vector of unknown parameters to
be estimated. vit follows a normal distribution with time-invariant variance vit ∼ N(0, σ2

v). uit

is explained by a vector of environmental variables xuit. Delay and demand are introduced as
environmental variables to determine inefficiency. ui follows a non-negative normal distribution
ui ∼ N+(µ, σ

2
u). xen

it represents a vector of frontier variables and environmental variables that are
confounding with error term; zit is a vector of instrumental variables for xen

it . The confounding
biases are introduced by the correlation between ϵit and vit, as Equation 4.[

ϵ̃it
vit

]
=

[
Ω−1/2ϵ̃it

vit

]
∼ N(

[
0
0

]
,

[
Im σvρ
σvρ

′ σ2
v

]
) (4)

where Ω is the variance-covariance matrix of ϵit, σ2
v is the variance of vit, and ρ is a vector of

correlation between ϵ̃it and vit. By adopting Cholesky decomposition of the variance-covariance

matrix of
[
ϵ̃it
vit

]
, we have [

ϵ̃it
vit

]
=

[
Ip 0
σvρ

′ σv

√
1− ρ′ρ

] [
ϵ̃it
w̃it

]
(5)

where ϵ̃it ∼ N(0, 1) and w̃it ∼ N(0, 1) are independent. Therefore, Equation 1 is expressed as

yit = xfitα− uit + wit + σvρ
′ϵ̃it = xfitα+ (xen

it − zitγ)
′η + eit (6)

where eit = wit − uit, wit = σv

√
1− ρ′ρw̃it and η = σvΩ

−1/2ρ. Therefore, eit is conditionally
independent from frontier variables xfit given xen

it and zit. Therefore, the log-likelihood function
for each panel i, constructing by all Ti time periods for unit i, is given by Equation 7.

lnLi = lnLi,y|x + lnLi,x (7)
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Li,y|x = −1

2
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)
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lnLi,x = −1

2

Ti∑
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(ln(|2πΩ|) + ϵ′itΩ
−1ϵit) (9)

where µi∗ =
σ2
wµ−σ2

ue
′
ihi

σ2
uh

′
ihi+σ2

w
; σ2

i∗ =
σ2
wσ2

u

σ2
uh

′
ihi+σ2

w
; σw = σv

√
1− ρ′ρ; hi = (hi1, hi2, ..., hiTi

); h2
it =

exp(x′
uitβ); eit = yit − x′

fitα − ϵ′itη; ϵit = xen
it − zitγ; and Φ is the standard normal cumulative

distribution function. The formula to predict inefficiency is EFFi = exp(−ui). Based on the
α̂ obtained from Maximum Likelihood Estimation, the expected runway capacity estimation is
xfitα̂.

4 Results and discussion

Estimation results

In this section, we apply confounding-adjusted SFA to Airport A, B, and C respectively. Table
2 provides insights into how these airport operational factors contribute to the change of runway
capacity and environmental factors affect inefficiency. For those exogenous factors, their param-
eters are in line with the intuition. The positive effect of the number of runway exits shown in
airport A is in accordance with the intuition that sufficient runway exits shorten runway occupancy
time and thus increase runway capacity. However, insignificant and even counter-intuitive results
shown in other airports might be due to little variations in the number of runway exits for those
airports with a symmetric parallel runway layout. Higher visibility and ceiling mean a greater
flexible flight rule and more runway capacity. They are less significant in some airports because
these European airports prefer to declare a more robust capacity, usually closer to the capacity
under instrument meteorological condition (IMC), and thus capacity experiences less change when
visibility and ceiling decrease Gulding et al. (2010). The results show that the increase in precip-
itation, crosswind speed, headwind speed, and even tailwind speed causes a significant reduction
in runway capacity. Although headwind shortens runway occupancy time for both takeoffs and
landings, such improvement is offset by a long time traveling through the terminal maneuvering
area with a low speed due to the headwind.
In addition to these exogenous variables, three variables (arrival rate, fleet mix, and delay) are
identified as endogenous. The endogeneity of these three variables is detected as statistically
significant in terms of both joint significance η and individual significance η1, η2, η3. Therefore,
the proposed model corrects these endogenous variables with their associated lagged difference as
instruments ∆xit(xit−xit−1) and ∆xit−1(xit−1−xit−2) Arellano & Bover (1995). The performance
of Model EN is reliable since these instruments pass the tests for exclusion (exogeneity) and
inclusion restriction (relevance), which are the J test for over-identifying instruments (less than
critical value χ2

3,0.95 = 7.81) and reduced from regression (greater than 10 based on the rule of
thumb) respectively. The results show that arrival rate and fleet mix have negative effects on
runway capacity, and delay has a positive effect on the inefficiency term, which is in accordance
with intuitive signs.

Validation results

To further assess the reliability of the proposed confounding-adjusted SFA, we aim to validate our
capacity estimates by simply comparing them with estimates from other empirical methods and
testing them via a statistical model. Table 3 displays hourly capacity estimates under visual mete-
orological condition (VMC) from different empirical sources and methods, including table lookup
FAA (1983), spreadsheet FAA (1983), Airport Corner in Eurocontrol Eurocontrol (n.d.), and our
proposed confounding-adjusted SFA. To make this comparison practical, the operational condi-
tion across methods should be as consistent as possible, although the required inputs (operational
condition factors) in each method are different.
The estimates from confounding-adjusted SFA in airport B and C appear to be low compared with
the direct estimates from table lookup and spreadsheet methods while being within a reasonable
range with 90 % of those estimates (in parentheses). Such a 10% reduction is suggested to make
estimates comparable with the actual flow during peak hours since estimates from the previous
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Table 2: Estimation Results

Airport A Airport B Airport C
Dep.var:throughput
constant 24.401*** 20.806*** 23.751***

(0.280) (0.068) (0.312)
arrival rate -0.247*** -0.448*** -0.513***

(0.055) (0.033) (0.047)
fleet mix 0.074 -0.225*** -0.156**

(0.061) (0.042) (0.049)
runway layout 0.614*** 0.136*** 0.409***

(0.046) (0.031) (0.032)
number of runway exits 0.617*** -0.019 -0.052*

(0.046) (0.026) (0.030)
separation gap -0.302** -0.567*** -0.070

(0.093) (0.076) (0.082)
precipitation -0.080* -0.011 -0.103**

(0.034) (0.026) (0.033)
visibility -0.015 0.070* 0.106**

(0.041) (0.029) (0.034)
ceiling -0.010 0.068* -0.044

(0.042) (0.029) (0.032)
density altitude 0.464*** 0.192*** 0.323***

(0.040) (0.028) (0.034)
crosswind speed -0.115*** -0.069** -0.080**

(0.033) (0.027) (0.031)
headwind speed -0.149*** -0.114*** -0.099**

(0.036) (0.029) (0.032)
tailwind speed -0.047* -0.054* -0.100**

(0.034) (0.027) (0.031)
Dep.var:lnσ2

u

constant 3.456*** 0.312* 3.671***
(0.126) (0.149) (0.127)

demand -0.504*** -0.529*** -0.542***
(0.28) (0.140) (0.027)

delay 0.032*** 0.221*** 0.029**
(0.009) (0.038) (0.009)

Dep.var:lnσ2
w

constant 2.632*** 2.241*** 2.458***
(0.012) (0.012) (0.012)

η1(arrival rate) -0.458*** -0.102* -0.190*
(0.089) (0.056) (0.075)

η2(fleet mix) 0.235* -0.051 -0.226**
(0.095) (0.063) (0.09)

η3(delay) -0.263*** -0.212*** -0.322***
(0.063) (0.054) (0.062)

η (joint endogeneity) x2=48.76 x2=19.61 x2=40.09
p=0.000 p=0.000 p=0.000

exogeneity 0.55 3.21 0.13
relevance 34668.57 52558.43 37160.94
observations 14000 13999 13999
log likelihood -85190.00 -77971.76 -82539.24
mean technical efficiency 0.0430 0.4419 0.0316
median technical efficiency 0.060 0.4295 0.0031
Notes: Standard errors in parenthesis. Asterisks indicate significance at 0.1% (***), 1 % (**) and 5% (*)levels. All

inputs are demeaned.
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two empirical methods are calculated based on minimum separation gap TRB (2012). The large
deviation in airport A is largely caused by mis-specifying runway layout in the first two methods
without considering the runway incursion in actual runway operation that arrivals crossing the
departure runway for taxing in. The performance of our proposed method is also validated in
airport B and C by comparing it with the declared capacity from Eurocontrol’s Airport Corner.
Such declared capacity for the whole system is calculated by summing up the declared capacity for
each runway as provided, which is valid when runways are independent, such as airports B and C.
However, in airport A, the dependent parallel runways and incursion problem make actual operation
cannot attain the maximum movement of each runway. Our estimate from the proposed method
is still reasonable and acceptable since the percentile 99 of the throughput per hour observed in
2019 is only 108 from Eurocontrol’s performance review report Commission (1997). Other slight
differences, within the 10% or even less variance range, might be due to different specifications in
operational condition factors across methods or measurement errors.

Table 3: Validation via comparison

Airport Runway layout Capacity estimation
method

Fleet mix
(%)

Maximum ca-
pacity (VMC,
hourly)

A
Dual
independent
parallel runway

Table lookup 121-180 189 (170)
Spreadsheet 121-180 187 (168)
Eurocontrol − 148
Confounding-adjusted SFA 149 98

B Independent
parallel runway

Table lookup 121-180 103 (93)
Spreadsheet 121-180 95 (86)
Eurocontrol − 88
Confounding-adjusted SFA 174 83

C Independent
parallel runway

Table lookup 81-120 111 (100)
Spreadsheet 81-120 110 (99)
Eurocontrol − 90
Confounding-adjusted SFA 116 95

Although the reliability of our estimates has been validated via simple comparison with other em-
pirical methods, it is just a point estimate for the capacity under normal condition. Our proposed
method is able to provide the estimates of runway capacity for each 15 minutes time interval un-
der different runway operational conditions. Therefore, we further adopt censored regression to
validate the proposed method statistically Kim & Hansen (2010).

y∗i = β1xi + ϵi (10)

yi =

{
y∗i y∗i ≤ ci

ci y∗i > ci
(11)

In this model, y∗i is the latent capacity for a 15 minutes time interval i, yi is the throughput (ob-
served capacity), and ci is the upper censoring limit, demand. xi is the estimated capacity from
the confounding-adjusted SFA. ϵi follows the independent identically distributed normal distribu-
tion with mean 0 and variance σ2

0 . If estimates from our proposed method are reliable, β̂1 → 1
could be yielded from the estimation of censored regression. Therefore, we calculate t-statistic
β̂−β
SE(β) for the coefficients with hypothesis H0 : β1 = 1 against H1 : β1 ̸= 1. Table 4 shows the
results of censored regression based on the whole data set with 14000 time intervals. The estimates
for β1 are reasonably and acceptably close to the expected value in practice. Although the null
hypothesis is rejected in terms of the t-statistic value, this is always a statistical problem that the
null hypothesis will be rejected when the sample size is extremely large. Overall, the estimates
from confounding-adjusted SFA are found to be reliable and compared favorably with the other
capacity estimation method.
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Table 4: Validation via censored regression

Airport A Airport B Airport C

Estimate Error t-statistic Estimate Error t-Statistic Estimate Error t-Statistic
β1 0.9239 0.0034 -22.38235 1.0683 0.0031 22.03226 0.8861 0.0033 -34.51515
σ0 6.9568 0.0605 − 5.2932 0.0463 − 6.8202 0.0571 −

5 Conclusion

The contribution of this study is bifold, (1) first developing the idea of empirically estimating the
runway capacity based on the SFA framework along with available large-scale and high-granular
data, and (2) further demonstrating the added value by handling the confounding problems prop-
erly and obtaining unbiased estimates of runway capacity and the parameters of their operational
condition factors via a confounding-adjusted SFA. This confounding-adjusted SFA is applied to
three airports’ day-to-day operation data respectively. The estimation results show the parameters
for those exogenous variables are in line with the intuition. The endogeneities for those endoge-
nous variables are statistically significant, and their parameters after instrument correction via the
proposed method are also in accordance with the intuitive signs. Moreover, the runway capacity
estimates from our proposed method are validated by comparing them with estimates from other
empirical methods and testing via a statistical model. The capacity estimates from our proposed
method are within 10% or less variance range and even nearly the same as the estimates from
other methods in terms of the point estimate under the normal operational condition. The results
from the statistical test also demonstrate the estimated capacity is reasonably and acceptably close
to the true capacity in practice. Therefore, such unbiased estimates of parameters for associated
operational condition factors facilitate airport operators’ better understanding of how these fac-
tors contribute to the dynamic change of runway capacity. Based on unbiased parameters, runway
capacity during short time intervals is estimated accurately which allows air traffic controllers to
manage the daily demand on the runway by allocating optimal runway capacity effectively and
modeling airport delay and delay propagation within airport networks. Moreover, the proposed
method developed to estimate runway capacity is also capable to evaluate the latent capacity in
other transport modes.
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