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Short summary

Multimodal mobility systems provide seamless travel by integrating different types of transporta-
tion modes. Most existing studies model service operations and travelers’ choices independently or
limited in multimodal travel options. We propose a choice-based optimization model for optimal
operations of multimodal mobility systems with embedded travelers’ choices using a multinomial
logit (MNL) model. We derive a mixed-integer linear formulation for the problem by lineariz-
ing transformed MNL constraints with bounded errors. The preliminary experimental test for a
small mobility on demand and public transport network shows the model provides a good solution
quality.
Keywords: Integrated service operations and user choices, Linearization of discrete choice con-
straints, Multimodal mobility systems.

1 Introduction

Multimodal mobility systems integrate different modes of transportation, such as walking, cycling,
driving, public transportation, and ride-sharing services, into a seamless and efficient network.
Recent advances in autonomous vehicles have the potential to increase coordination among traffic
modes, especially for Mobility-on-Demand (MoD) services (e.g., taxis, Lyft, Uber, and DiDi) which
provide point-to-point services and can connect travelers to public transportation.

In the multimodal mobility area, from the supply side, service providers decide on operations
like vehicle routing. For the demand side, travelers choose the modes (e.g., Subway, ride-sharing
services, or a combination of them) and path according to the features of available options like
travel time and price. However, most studies model service providers’ operations and travelers’
choices independently or limited in multimodal travel options. For example, Wollenstein-Betech et
al. (2022) proposed an integrated Autonomous Mobility-on-Demand (AMoD) system with public
transportation. They optimize the routing and rebalancing of the AMoD fleet from the system-
optimum perspective, while the travelers’ choices of modes are exogenous to the operation opti-
mization model. Liu et al. (2019) developed a multimodal transportation system integrating a
choice model in which travelers can choose either public transport or MoD services but not multi-
modal travel options. Pi et al. (2019) integrated a choice model in a multimodal dynamic traffic
assignment model by repeatedly updating travelers’ pre-defined multimodal mode choices and as-
signment results until convergence.

Conceptually, an effective operation modeling in a multimodal mobility system should jointly con-
sider service operations (supply) and travelers’ choice preferences (demand). Mathematically, this
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can be modeled as a choice-based optimization problem. Choice-based optimization models are
mathematical models that optimize decision-making based on choices made by individuals. These
models are commonly used in marketing, economics, and other fields where individuals make
choices based on various factors such as price, quality, and convenience. Many studies found that
the choice-based optimization model is highly relevant in the real world since it can provide more
accurate predictions of decision-making behavior Roemer et al. (2023).

The paper proposes a choice-based optimization model for cooperative travels in the multimodal
mobility system, which aims to minimize the total system travel time by deciding part of service op-
erations while satisfying travelers’ choice preferences characterized by the multinomial logit model
(MNL). Due to the non-linearity and non-convexity of the MNL model embedded in the problem,
limited research has thus far been devoted to solving it. Pacheco Paneque et al. (2021) proposed a
mixed-integer linear formulation based on simulation for the related discrete choice models. Later,
Pacheco Paneque et al. (2022) adopted scenario decomposition and scenario grouping based on
their aforementioned paper into a novel Lagrangian decomposition method to solve a choice-based
optimization problem.

Different from the simulation and the Lagrangian decomposition-based methods, we propose and
explore a new mixed-integer formulation for the choice-based optimization model for the studied
problem. The main contributions of this paper are two-fold:

• Propose a choice-based optimization model for cooperative travels in multimodal mobil-
ity systems. It optimizes system travel times by deciding part of service operations while
satisfying travelers’ choice preferences.

• Propose a novel mixed-integer formulation to effectively solve the choice-based optimization
problem by linearizing transformed MNL constraints with bounded errors.

Note that we validate our model on a simple network with MoD and public transport services
and compared it with sampling and simulation-based approach in linearizing MNL constraints.
More experimental tests on the real-world network will be conducted and also compared with
state-of-art models and general nonlinear optimization solvers, such as numerical optimization and
meta-heuristics.

2 Methodology

Model description

We define a multi-modal transportation network G containing multiple layers. One layer represents
MoD services, and each other layer can represent a specific mode, such as subway, buses, shared
bikes, or walking. For simplicity, we only discuss one MoD layer and one public transportation
layer (e.g., subway), as shown in Fig 1. However, our formulation can be easily expanded to one
MoD layer and multiple other layers.

Figure 1: A simple example of a multi-modal transportation system

Denote G = {Gm∪Gp} that MoD layer Gm = (Vm, Em) has vertices Vm and edges Em. The same
for the public transportation layer Gp = (Vp, Ep). There are transition links T connecting two
different layers to represent possible transfers of modes. Denote G = (V,E) that V = {Vm ∪Vp} is
the set of all points in the network and E = {Em ∪ Ep ∪ T} is the set of all edges in the network.

To model demand over different OD pairs, denote by w = (ws, wt) an OD pair starting from vertex
ws to vertex wt and dw ≥ 0 as the travel demand rate in this OD pair. Define W as the set of
OD pairs. We denote by xw

e the travel flow by OD pair w on edge e, xe =
∑

w∈W xw
e the total

flow on edge e, and xb
e the rebalancing flow of MoD services. X = {xw

e |e ∈ E,w ∈ W} and

2



Xb = {xb
e|e ∈ E} are non-negative continuous decision variables.

For OD pair w, denote Rw as the set of possible routes and θwr as the percentage of travelers
taking route r. To model relationships between edges and routes, define δwer as equal to 1 if edge e
belongs to route r of OD pair w, 0 otherwise. Along with each edge e ∈ E, we also have associated
non-negative travel time te ≥ 0 and non-negative cost pe ≥ 0. We can set travel time and prices
for edges to express different travel time patterns and price policies. The travel time tr and cost
pr can then be expressed simply by the equations

tr =
∑
e∈E

δwerte ∀w ∈ W, ∀r ∈ Rw, (1)

pr =
∑
e∈E

δwerpe ∀w ∈ W, ∀r ∈ Rw. (2)

We assume the utility function of route r for the OD pair w as follows:

µwr = −β1t
r − β2p

r, (3)

where β1 and β2 are marginal costs for time and price respectively.

To model our problem, denoted P0, we define E+(i) ∈ E as the set of edges starting from vertex
i, and E−(i) ∈ E as the set of edges ending with vertex i. Then, P0 can be expressed as follows:

min
X,Xb

∑
e∈E

te (xe)xe (4)

s.t.
∑

e∈E−(i)

xw
e + 1i=ws

dw =
∑

e∈E+(i)

xw
e + 1i=wt

dw ∀w ∈ W, i ∈ V, (5)

∑
e∈E−

m(i)

(
xb
e + xe

)
=

∑
e∈E+

m(i)

(
xb
e + xe

)
∀i ∈ Vm, (6)

xw
e = dw

∑
r∈Rw

δwerθ
wr ∀w ∈ W, ∀e ∈ E, (7)

θwr =
exp (µwr)∑

r′∈Rw
exp (µwr′)

∀r ∈ Rw, ∀w ∈ W, (8)

xw
e ≥ 0 ∀w ∈ W, ∀e ∈ E, (9)

xb
e ≥ 0 ∀e ∈ E. (10)

Objective (4) minimizes total travel time in the multi-modal system. Constraint (5) complies
with flow conservation and demand. Constraint (6) regulates the rebalancing flow of MoD service.
Constraint (7) describes the relationship between flow and route. Constraint (8) ensures the
percentages of routes’ choices fulfill an MNL model. Constraints (9) and (10) define non-negative
ranges for the decision variables.

Linearizing transformed MNL constraints

The main computational challenge of the model is due to the nonlinear parts, especially the non-
linear constraint (8). Based on three reasonable assumptions, we are able to separately deal with
distinct cases for constraint (8) to avoid some computational challenges.

For OD pair w, we select an arbitrary route r0 as the base route. Then, constraint (8) can be
represented by the constraints

θwr

θwr0
=

exp (µwr)

exp (µwr0)
,∀r ∈ Rw/r0,∀w ∈ W, (11)

∑
r∈Rw

θr = 1,∀w ∈ W. (12)

.
Take the natural logarithm on both sides of constraint (11):

ln θwr − ln θwr0 = µwr − µwr0 ,∀r ∈ Rw/r0,∀w ∈ W (13)
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Then, We give an equivalent formulation P ′
0 for our original problem: (4), s.t.{(5), (6), (7), (9),

(10), (12), (13)}

In P ′
0, constraint (13) is still non-linear and could be handled by a piece-wise linear approximation.

However, for φ = lnθ, it is difficult to obtain accurate piece-wise linearization when θ is close to
0 since φ

′
= 1/θ → +∞, when θ → 0. Therefore, we apply slight transformations of the original

problem to avoid that θ takes a value close to 0 when doing piece-wise linearization.

Constraint (8) describes the MNL model. We revise the model by adding three assumptions for
an OD pair w:

1. θwr can only take values of 0 ∪ [ϵ, 1] where ϵ is a small threshold, such as 0.1%, that fulfills
the accuracy requirements of the application.

2. if θwr1 ≥ ϵ and θwr2 ≥ ϵ, r1, r2 ∈ Rw, then:

θwr1

θwr2
=

exp (µwr1)

exp (µwr2)
. (14)

3. if θwr = 0, then ∀θwr′ ≥ ϵ, r′ ∈ Rw, r′ ̸= r :

θwr′ exp (µ
wr)

exp (µwr′)
< ϵ. (15)

We argue that these assumptions are reasonable. In practice, the original MNL model assigns
extremely small probabilities to options/routes no matter how inferior they are according to con-
straint (8). It is common to round the probabilities for these unattractive options to 0 as long as
they are lower than a threshold similar to assumption 1. Assumption 2 ensures that all non-zero
probabilities fulfill the MNL relationship. Assumption 3 ensures that options with 0 probability
are unattractive options. Thus, the assumptions allow us to exclude parts of the search space that
are not interesting for the application but may create numerical challenges.

We now calculate the error boundary when these three assumptions are used to replace constraint
(8). For simplicity, we restrict the discussion to one OD pair and assume there are n options/routes.
Denote by θ̂i the probability of route i computed based on the assumptions and by θi the proba-
bility computed by the original constraint. µi is the utility function of route i. We define sets N0

and N1 that route i ∈ N0 if θ̂i = 0, i ∈ N1 if θ̂i ≥ ϵ. N is the union of N0 and N1.

For route i ∈ N0:
∆i = |θi − θ̂i| = θi

=
exp (µi)∑

j∈N exp (µj)
≤ exp (µi)∑

j∈N1
exp (µj)

Since: exp (µj) >
θ̂j exp (µi)

ϵ
,∀j ∈ N1

<
ϵ∑

j∈N1
θ̂i

= ϵ

(16)
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For route i ∈ N1:
∆i = |θi − θ̂i|

=
exp (µi)∑

j∈N1
exp (µj)

− exp (µi)∑
j∈N exp (µj)

=
exp (µi)

∑
j∈N0

exp (µj)∑
j∈N1

exp (µj)
∑

j∈N exp (µj)

= θ̂i

∑
j∈N0

exp (µj)∑
j∈N exp (µj)

≤
∑

j∈N0
exp (µj)∑

j∈N exp (µj)

=
1

1 +
∑

j∈N1
exp(µj)∑

j∈N0
exp(µj)

≤ 1

1 +
∑

j∈N1
exp(µj)

|N0|maxj∈N0
exp(µj)

Since: exp (µj) >
θ̂j maxk∈N0 exp (µk)

ϵ
,∀j ∈ N1

<
|N0|ϵ

|N0|ϵ+
∑

j∈N1
θ̂j

=
|N0|ϵ

|N0|ϵ+ 1

≤ |N |ϵ
|N |ϵ+ 1

(17)

Therefore, with a threshold of an acceptable error bound maxi |∆i|, we can define our new problem
P1 with the replacement of constraint (8) by the three assumptions.

To encode the logic implied by the assumptions into our optimization problem, we introduce binary
variables bwr. These binary variables work as indicators with bwr = 1 if θwr ≥ ϵ, and 0 otherwise.
We assume the absolute value of the utility function (3) has an upper bound |U |max. Then, define
continuous variables φwr ∈ [ln ϵ − |U |max, 0], w ∈ W, r ∈ Rw, φ̃wr ∈ [ln ϵ, 0], w ∈ W, r ∈ Rw, and
θ̃wr ∈ [ϵ, 1], w ∈ W, r ∈ Rw for auxiliary. Define a small positive value τ to deal with the strict
inequality in assumption 3 and avoid numerical issues in (20).

P1:

min
X,Xb

∑
e∈E

te (xe)xe

s.t. (5), (6), (7), (9), (10), (12),
θwr = 0 ∪ [ϵ, 1] ∀w ∈ W, r ∈ Rw, (18)
bwr ≥ θ/2 ∀w ∈ W, r ∈ Rw, (19)
bwr ≤ θ/ϵ+ τ ∀w ∈ W, r ∈ Rw, (20)
φwr − φwr0 = µwr − µwr0 ∀w ∈ W, ∀r ∈ Rw/r0, (21)

φ̃wr = ln θ̃wr ∀w ∈ W, ∀r ∈ Rw, (22)
bwr = 1 → φwr = φ̃wr ∀w ∈ W, ∀r ∈ Rw, (23)

bwr = 1 → θwr = θ̃wr ∀w ∈ W, ∀r ∈ Rw, (24)
bwr1 = 0 and bwr2 = 1 →
µwr1 − µwr2 ≤ ln ϵ− φwr2 − τ ∀w ∈ W, ∀r1, r2 ∈ Rw, r1 ̸= r2, (25)

bwr ∈ {0, 1} ∀w ∈ W, ∀r ∈ Rw, (26)
ln ϵ− |U |max ≤ φwr ≤ 0 ∀w ∈ W, ∀r ∈ Rw, (27)
ln ϵ ≤ φ̃wr ≤ 0 ∀w ∈ W, ∀r ∈ Rw. (28)

Constraints (18), (19), and (20) restrict the ranges of θwr. They indicate that θwr is non-zero by
bwr = 1 and zero by bwr = 0. Constraints (21), (22), (23), and (24) ensure assumption 2 holds
when probabilities of two routes are greater than ϵ and make piece-wise linearization of natural
log function starts from ln ϵ. Constraints (25) ensure assumption 3 holds. Constraints (26), (27),
and (28) define ranges of variables.

In a sophisticated mixed-integer linear programming solver, such as Gurobi, it is possible to include
constraint (18) by semi-continuous variables, and constraint (22) through so-called general con-
straints. The formulation P1, thus, allows us to utilize powerful mixed-integer linear programming
software.
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3 Results and discussion

In this section, we present experiments based on an artificial network to show the accuracy of the
results. As shown in Fig (2), the case has two layers of MoD services and Subway connected by
some transition links. In the MoD layer, points represent districts in a virtual city while edges are
abstracted roads. In Subway layer, there are two lines. Each station is connected with a point in
the MoD layer by a transition link.

1 2 3

4 5 6

7 8

10

11

12

13 14

Transition Links

MoD services Subway

Figure 2: The case illustration

For fare, we set a distance-based fare for MoD services that pe = 10$,∀e ∈ Em and an entrance-
based fare for the subway that pe = 4$,∀e = (i, j), i ∈ Vm, j ∈ Vp. As for the travel time, we
assume a constant travel time of 5 min for transition links and 15 min for all edges in the public
transportation layer. We use Bureau of Public Roads function (29) for edges in the MoD layer,
given by

te (xe) = t0e

(
1 + α (xe/me)

β
)
, (29)

and we use the typical values α = 0.15 and β = 4. t0 = 10
√
2 min is set in function (29) for edge

(4, 7) and t0 = 10 for the rest of edges. We also assume all edges have the same capacity m = 20k
pcu/h. We set a fixed time of 15 min for edges in Subway layer and 5 min for transition links.
To solve the model, we apply piece-wise linearization to (29). Gurobi can handle the quadratic
terms in the objective (4) by "translating them into bilinear form and applying spatial branching"
according to its website (https://www.gurobi.com/documentation/10.0/refman/nonconvex.html).

The parameters in the utility function (3) are normally estimated by real data. However, we di-
rectly define β1 = 1/min and β2 = 1/$ for two reasons: (1) Our contribution is in the algorithm.
Such settings are enough for illustration and basic exploration. (2) For utility function’s parameter
estimation, most literature on the multi-modal transportation system normally do modal split first
to decide demands for each mode. However, our problem jointly considers mode and route choices.
It is difficult to find a perfectly suitable estimation in current research.

In the given case settings, we solve P1 with a threshold ϵ of 0.01 by an i9-12900H CPU and Gurobi
10.0.0 in 22.42s. Table 1 displays the solution results of our model. There are 4 OD pairs and
corresponding flows as shown by w : dw. |Rw| represents the number of available routes of OD
pair w. r ∈ Rw shows the detailed information of active routes which have non-zero choice proba-
bilities and how many inactive routes. θ̂wr is the choice probability obtained by P1 and θwr is the
one computed by the original MNL model based on the utility values in the solution. ∆wr is the
difference between two computations of choice probabilities to measure the solution quality.

Table 1 shows the solution results of the proposed formulation. The differences ∆wr between the
linearized MNL and the original MNL models are quite small, which illustrates that the proposed
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Table 1: Results of the proposed formulation

OD: flow Routes Route P1 MNL Error
w : dw |Rw| r ∈ Rw θ̂wr θwr ∆wr

(1, 8): 15k 22 [1, 4, 7, 8] 100.00% 100.00% 0.00%
21 routes remain... 0.00% ≤ 0.00% ≤ 0.00%

(8, 1): 30k 22 [8, 6, 3, 2, 1] 4.05% 4.02% 0.03%
[8, 6, 5, 2, 1] 6.67% 6.65% 0.03%
[8, 7, 4, 1] 89.27% 89.10% 0.18%
19 routes remain... 0.00% ≤0.21% ≤0.21%

(3, 7): 23k 21 [3, 6, 5, 7] 43.71% 43.25% 0.46%
[3, 6, 14, 11, 12, 7] 7.67% 7.58% 0.09%
[3, 2, 5, 7] 41.68% 41.24% 0.44%
[3, 2, 10, 11, 12, 7] 6.94% 6.86% 0.09%
17 routes remain... 0.00% ≤0.99% ≤0.99%

(7, 3): 25k 21 [7, 8, 6, 3] 19.15% 19.14% 0.01%
[7, 5, 6, 3] 29.83% 29.82% 0.01%
[7, 5, 2, 3] 42.18% 42.17% 0.00%
[7, 12, 11, 14, 6, 3] 3.25% 3.22% 0.03%
[7, 12, 11, 10, 2, 3] 5.60% 5.59% 0.01%
16 routes remain... 0.00% ≤0.03% ≤0.03%

method gives a good approximation.

We also tried the sampling and simulation method inspired by Pacheco Paneque et al. (2021) to
linearize the choice constraint (Table 2). We set 100 draws for each OD pair and solved the same
case in 3039.57s. Here, θ̂wr is the probability obtained by the simulation-based method and θwr is
the one calculated by the MNL model based on the utility values in the solution. We still use the
differences between the two probabilities to measure the solution quality.

Table 2: Results of the simulation-based formulation

OD: flow Routes Route Simulation MNL Error
w : dw |Rw| r ∈ Rw θ̂wr θwr ∆wr

(1, 8): 15k 22 [1, 4, 7, 8] 100.00% 100.00% 0.00%
(8, 1): 30k 22 [8, 6, 3, 2, 1] 4.00% 5.61% 1.61%

[8, 6, 5, 2, 1] 6.00% 8.98% 2.98%
[8, 7, 4, 1] 90.00% 85.08% 4.92%

(3, 7): 23k 21 [3, 6, 5, 7] 46.00% 37.67% 8.33%
[3, 6, 14, 11, 12, 7] 7.00% 7.73% 0.73%
[3, 2, 5, 7] 40.00% 45.64% 5.64%
[3, 2, 10, 11, 12, 7] 7.00% 7.96% 0.96%

(7, 3): 25k 21 [7, 8, 6, 3] 18.00% 19.30% 1.30%
[7, 5, 6, 3] 31.00% 27.02% 3.98%
[7, 5, 2, 3] 42.00% 44.93% 2.93%
[7, 12, 11, 14, 6, 3] 4.00% 3.03% 0.97%
[7, 12, 11, 10, 2, 3] 5.00% 5.66% 0.66%

As shown in Table 2, the simulation-based formulation produces the same routes of non-zero
probabilities as the ones by our proposed formulation. However, the error of the simulation-based
formulation can be up to 8.33% which is much greater than the error shown in Table 1. The
comparison suggests our proposed formulation has good solution quality.
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4 Conclusions

This paper proposes a choice-based optimization model for integrated service operations and trav-
eler choices in multimodal mobility systems. We derive a mixed-integer formulation by linearizing
the MNL-based discrete choice constraints with bounded errors. Preliminary experiments show
that the proposed formulation provides a good solution quality. Future work will derive the com-
putation complexity and test the methodology on large-size problems, as well as compare it with
state-of-art solution methods.
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