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Short summary

There exist two major categories of activity-based models: on one side, utility-based or economet-
ric models are founded on the principles of random utility maximisation, and use discrete choice
modelling techniques to solve activity-based problems. On the other hand, rule based approaches
refute the assumption that decision-makers are perfect optimisers and their activity-travel be-
haviour is the product of context-dependent rules. Recently hybrid models (e.g. OASIS) combine
both approaches, to keep the flexibility and theoretical robustness of utility-based models, with
the addition of spatio-temporal constraints which increase the behavioural realism and simplify
the estimations. However, hybrid models suffer from two main issues: specifying a utility func-
tion that accurately reflects the decision-making process, and estimating parameters in a highly
complex space due to the constraints. In this paper, we answer these questions within the context
of the OASIS framework (Pougala et al., 2022). We first estimate the parameters of two state-of-
the-art utility functions (Charypar & Nagel, 2005; Feil, 2010), using data from the Swiss Mobility
and Transport Microcensus (Office fédéral de la statistique and Office fédéral du développement
Territorial, 2017) and compare them with OASIS’ default linear-in-parameters utility function of
the model.
Keywords: activity-based modelling, discrete choice modelling, parameter estimation

1 Introduction

Activity-based models (ABMs) stem from the fundamental assumption that travel demand is de-
rived from the need to perform activities, rooted in a spatiotemporal context, and influenced by
personal and environmental factors. By focusing on individuals and explicitly considering these
interactions, ABMs aim to be more behaviourally realistic than traditional trip-based models, and
to provide more flexible and targeted insights on individual mobility. Successful applications of
activity-based models have demonstrated the added value of shifting the focus to individuals and
their activities. Two main approaches can be cited: utility-based and rule-based models. The
scheduling process is a result of random utility maximisation for the former, and the satisfaction
of a set of spatio-temporal rules for the latter. While historically both approaches were consid-
ered contradictory, there has been increased research in hybrid models which combine elements
from either theory. One limitation of hybrid approaches can be the significant complexity of the
models, which require both a robust utility specification able to reflect the dynamics and inter-
actions involved in the decision-making process, and informative constraints that can efficiently
reduce the solution space without impacting the completeness of the results. We present the case
of the OASIS framework, an integrated framework to simulate daily activity schedules by con-
sidering all choice dimensions (activity participation, timing decisions, mode and location choice)
simultaneously. The model was designed to accommodate any utility specification and constraints
depending on the context, but current implementations have relied on many simplifying assump-
tions both for the utility specification and formulation of constraints, mainly to compensate for the
lack of available data. As a result, the utility function is too simple to properly capture all facets
of activity-travel behaviour, which limits possible extensions of the model (including multiday or
multiperson scheduling).

The formulation of behaviourally realistic utility functions has been the focus of many works in
utility-based models for activity-travel behaviour. In particular, authors have been interested on
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the impact of timing (start time and duration) on the utility of performing an activity. One com-
mon assumption, derived from studies on departure time (Small, 1982), is that individuals have
preferences regarding the timings of their activities, and penalise deviations from such preferences
(e.g. Pougala et al., 2022; Charypar & Nagel, 2005; Allahviranloo & Axhausen, 2018). These de-
viations can be asymmetrical (e.g. being late is more penalised than being early). Other authors
consider these preferences more implicitly: for example, Joh et al. (2005) formalise an S-shaped
utility for duration, which captures the behavioural assumption that a frustration (e.g. being
involved in an activity for a duration too short) and satiation (e.g. the activity duration is too
long) effects exist. This formulation always considers an increasing utility function, but at different
rates depending on whether the threshold of satiation has been reached. This is not the case for
formulations that consider explicit scheduling preferences, where the utility (of activity duration)
can decrease. Joh et al.’s S-shaped function was adopted by multiple authors, such as Feil (2010)
and Ettema & Timmermans (2003). An important gap in the literature is the calibration of utility
parameters to observed data, either due to lack of data or due to the complexity of the model.

In this paper, we investigate different utility specifications for activity participation and timing, to
be used within the OASIS framework. The specifications presented here are: the OASIS default
utility function and two utility functions (Charypar & Nagel, 2005; Feil, 2010) used as scoring
functions in the state-of-the-art agent-based microsimulator MATSim. We use the estimation
component of the OASIS framework to estimate the parameters of all three utility specifications,
using the Mobility and Transport Microcensus (MTMC), a nationwide travel survey of Switzerland
(Office fédéral de la statistique and Office fédéral du développement Territorial, 2017). The purpose
of this investigation is two-fold:

1. first, to test our methodology for parameter estimation on state-of-the-art utility functions,

2. to empirically investigate the differences of these utility specifications, and their implications
in terms of behaviour.

.
This paper is organized as follows. In Section 2, we present the OASIS framework, and in particular
the methodology to estimate the parameters of the model based on Metropolis-Hastings sampling.
We apply this procedure on the three utility functions described, using a sample of the MTMC
data. Finally, we discuss key differences between the specifications, and propose some insights for
future investigations.

2 Methodology

OASIS framework

In this section, we briefly introduce the OASIS framework (Pougala et al., 2022). The framework
(Fig. 1) is composed of two main elements:

1. A simulation model that outputs distributions of feasible schedules for given individuals,
based on a mixed-integer optimisation model where the objective function is the utility of
the schedule.

2. An estimation component to calibrate the parameters of the said utility function.

Parameter estimation

In the OASIS framework, the estimation of parameters is two-fold:

1. For a given individual n, generate a set of K feasible alternatives C̃n = {S0, ..., Sk−1, Sk}
which includes the chosen schedule Sk = S∗. The non-chosen schedules Si∀i ̸= k are sampled
using the Metropolis-Hastings algorithm (Algorithm 1), where the target distribution is
proportional to the utility function of the problem. The parameters of the target distribution
are estimated on a random choice set:

(a) Begin with an initial schedule S0

(b) At each iteration i, propose a candidate state Snew by modifying the current schedule
in one dimension (activity participation, timing, or travel).
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Figure 1: OASIS framework

(c) Accept or reject Snew based on the predefined acceptance probability.

2. Considering the choice probability in Eq.1, the maximum likelihood estimators of the pa-
rameters β̂ are derived from the corresponding likelihood function.

Pin = Pn(i|C̃n) =
eµVin+lnPn(C̃n|i)∑

j∈C̃n
eµVjn+lnPn(C̃n|j)

(1)

Given that the parameters are estimated on a sample of alternatives C̃n, the choice probabil-
ity is corrected with a term lnPn(C̃n|j), in order to obtain unbiased estimators (Ben-Akiva
& Lerman, 1985). This term corresponds the sampling probability of the choice set C̃n, and
is directly obtained from the Metropolis-Hastings routine.

Algorithm 1 Choice set generation for the ABM with Metropolis-Hastings
t← 0, initialise state with random schedule Xt ← S0

Initialise utility function with random parameters ŨS

for t = 1, 2, ... do
Choose operator ω with probability Pω

X∗, q(Xt, X
∗)← ApplyChange(ω,Xt)

function ApplyChange(ω, state X)
return new state X ′, transition probability q(X, X ′)

end function
Compute target weight p(X∗) = ˜US(X∗)

Compute acceptance probability α(Xt, X
∗) = min

(
p(X∗)q(Xt|X∗)
p(Xt)q(X∗|Xt)

)
With probability α(Xt, X

∗), Xt+1 ← X∗, else Xt+1 ← Xt

end for

Simulation

The scheduling process for a given individual n, a set of activities to be scheduled An, and sets
of possible modes Mn and La,n is summarised in 2. The set of estimated parameters βa,n is also
provided as input.
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The objective function of the maximisation problem is the utility function of the schedule. This
function is expressed as a sum of a deterministic element and an error term (Eq.2). We assume
the distribution of the error term to be known.

US = VS + εS (2)

The decision variables (activity participation, start time, duration, sequence,...) are chosen such
as to maximise the utility of the schedule subject to constrained. For a draw of the error term εrS ,
the maximisation problem becomes deterministic, and yields one optimal schedule Sr which is a
draw from the distribution of schedules for n.
The constraints of the optimisation problem can be classified in two categories:

1. Mathematical constraints: they ensure that the resulting schedule is valid. For example, the
time budget T cannot be exceeded, activities cannot overlap,...

2. Context-dependent constraints: they are additional rules that influence the activity-travel
behaviour. For example, some activities must take precedence over others (e.g. picking up
children from school must happen after they were picked up),...

Algorithm 2 Simulation of activity schedules
Initialise n, βn, An, Mn, Ln

for r = 1,2,...,R do
Draw εrS from distribution of error terms.
Draw schedule Sr

n by solving Ω = maxUS(Xn, βn, ε
r
S) s.t. constraints

end for

Utility specification

For an individual n, each activity a provides a utility Uan , composed of the following elements:

1. A participation term, which is constant with respect to time.

2. A utility with respect to activity start time.

3. A utility with respect to activity duration.

4. Utility terms with respect to travel, considering the influence of travel time and cost to the
activity.

In this paper, we test different specifications of the utility function, more specifically, the utility
terms associated with start time and duration.

Default OASIS utility function

In the default OASIS utility function (Eq.3), the influences of start time xa and duration τa are
considered by penalising deviations from preferred start time x∗

a (earlier or later starts are penalised,
see Eq. 4) and duration τ∗a (shorter or longer durations are penalised, see Eq. 5). For each activity,
we therefore estimate four parameters corresponding to the penalties: {θearly, θlate, θshort, θlong}, as
well as activity-specific constants. The assumption is that individuals have asymmetrical penalties
for positive and negative deviations from their preferences1, and penalise differently each activity
(implying different ranges of flexibility).
Further assumptions are taken for the home activity:

1. The start time is constrained: the day must start at home. There is therefore no utility
associated with start time.

2. The duration of the home activity is not associated with a preference, but results from the
other scheduled activities. There is therefore no utility associated with duration.

1The preferred start time and duration can be a fixed point or a continuous range.
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US = U +

A−1∑
a=0

(Uparticipation
a + U start time

a + Uduration
a +

A−1∑
b=0

U travel
a,b ) (3)

U start time
a = θearly

a max(0, x∗
a − xa) + θlate

a max(0, xa − x∗
a) + εstart time (4)

Uduration
a = θshort

a max(0, τ∗a − τa) + θlong
a max(0, τa − τ∗a ) + εduration (5)

MATSIM scoring function

The utility function used in MATSIM was formalised by Charypar & Nagel (2005). The utility
of activity duration has a logarithm form (Eq. 7), which implies a decreasing marginal utility. In
addition, a too short duration is penalised. For start time (Eq. 8), schedule deviations such as
being late or early are penalised.
The parameters are: a parameter common to all activities βact, a typical duration τ∗a (considered
known), a scaling factor A and a priority term ρ. βshort, βearly, βlate penalise schedule deviations
(δ).

US = U

A−1∑
a=0

(Uduration
a + U start time

a + U travel
a ) (6)

Uduration
a = max

[
0, βactτ

∗
a ln

(
τa

τ∗a exp(−A/(ρτ∗a ))

)]
+ βshort

a δshort
a (7)

U start time
a = βearly

a δearly
a + βlate

a δlate
a (8)

PlanomatX utility function

We test the utility specification proposed by Feil (2010), which is a modification of the MATSIM
utility function (Section 2). The utility function considers the impact of activity duration with an
asymmetric S-shaped curve with an inflection point, as formalised by Joh et al. (2005) (Eq. 10).
The parameters of the S-shape are: the inflection point αa, the slope βa, and the relative vertical
position of the inflection point γa. When γa = 1, αa can be considered as the duration where the
utility reaches its maximum. They do not consider start time in their utility function.

US =

A−1∑
a=0

(Uact
a + U travel) (9)

Uact
a = Umin

a +
Umax
a − Umin

a

(1 + γa expβa [αa − τa])1/γa
(10)

3 Results and discussion

Case study

We use the Mobility and Transport Microcensus (MTMC), a Swiss nationwide survey gathering
insights on the mobility behaviours of local residents (Office fédéral de la statistique and Office
fédéral du développement Territorial, 2017). Respondents provide their socio-economic character-
istics (e.g. age, gender, income) and those of the other members of their household. Information
on their daily mobility habits and detailed records of their trips during a reference period (1 day)
are also available. The 2015 edition of the MTMC contains 57’090 individuals, and 43’630 trip
diaries. In order to illustrate a real-life application of the simulator, we focus on the sample of
full-time students residing in Lausanne (236 individuals).

Following the methodology described in Section 2, we start by generating the choice sets of daily
schedules for each individual in the sample. Each choice set is composed of 10 alternatives, includ-
ing the chosen (recorded) schedule.

The models are estimated with PandasBiogeme (Bierlaire, 2020). The estimation process is done
using 70% of observations in the sample data, where one observation is the daily schedule of one
individual.
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Estimation results

Tables 1, 2, and 3 present the parameter estimates for the OASIS utility function, the MATSIM
scoring function, and the PlanomatX function, respectively. We have chosen to display only signif-
icant parameters at a 5% level. For the estimation of the MATSIM function, we have considered
the same assumptions as described by Charypar & Nagel (2005) for the values of the scaling pa-
rameter (A = −200) and the priorities for each activity (ρa = 1 for a ∈ {home, education, work}
and ρa = 3 otherwise).

Similarly, we have assumed for the estimation of the PlanomatX function that Umin
a = 0 and

γa = 1 ∀a, as described by Feil (2010).

Finally, given that in the OASIS context, home is the reference alternative and therefore associated
with a null utility, we do not have estimated any parameter for this activity. The magnitudes and
signs of the other coefficients should therefore be considered relative to the home baseline.

OASIS

For education, being early seems to be slightly more penalised than being late, although the penal-
ties are almost symmetrical. For duration, cutting the activity short is associated with a negative
penalty, whereas a long duration is not regarded negatively (the associated parameter is not sig-
nificantly different from 0). Surprisingly, for work the penalty for being late is not statistically
significant, while being early or a short duration are significantly penalised.

For leisure, only being late is penalised. This can be explained by the fact that, while leisure is
usually considered as a discretionary activity, it is likely constrained by the participation of other
individuals or feasible times (e.g. opening hours of facilities The penalty for a short duration for
both leisure and shopping is not significant, which implies that these activities are more flexible
than education or work for scheduling trade-offs.

Param. Rob. Rob. Rob.
Parameter estimate std err t-stat p-value

Education: ASC 7.62 1.26 6.04 1.55e-09
Education: early -1.15 0.282 -4.07 4.62e-09
Education: late -0.89 0.214 -4.15 3.28e-05
Education: short -0.452 0.23 -1.97 0.0493
Leisure: ASC 5.02 0.679 7.38 1.57e-13
Leisure: late -0.747 0.135 -5.54 3.1e-08
Leisure: long -0.137 0.0497 -2.75 0.00593
Shopping: ASC 5.04 0.807 6.25 4.07e-10
Shopping: early -0.652 0.144 -4.53 5.88e-06
Shopping: late -0.534 0.0944 -5.65 1.57e-08
Shopping: long -0.17 0.06 -2.84 0.00456
Work: ASC 4.34 1.53 2.84 0.00448
Work: early -0.71 0.223 -3.19 0.00145
Work: short -1.37 0.481 -2.86 0.00423

Summary statistics
L(0) = −454.1869
L(β̂) = −152.0466
ρ̄2 = 0.621

Table 1: Estimation results for OASIS utility function. Only statistically significant pa-
rameters were included.
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MATSIM

A similar behaviour is implied by the estimates of these parameters. For education both start time
deviations are penalised (being early slightly more than being late) in comparable magnitudes.
Being early at a leisure activity is not associated with a statistically significant penalty, as opposed
to being late. For work, we have once again an insignificant parameter for being late.

Param. Rob. Rob. Rob.
Parameter estimate std err t-stat p-value

βact 0.0514 0.00974 5.27 1.34e-07
Education: early -1.6 0.449 -3.57 0.00036
Education: late -1.01 0.291 -3.48 0.00051
Leisure: late -0.467 0.122 -3.84 0.00012
Shopping: early -0.476 0.119 -4.01 6.04e-05
Shopping: late -0.293 0.0842 -3.48 0.00049
Work: early -2.75 0.712 -3.87 0.000111
Work: short -1.59 0.493 -3.22 0.00126

Summary statistics
L(0) = −593.8925
L(β̂) = −248.568
ρ̄2 = 0.56

Table 2: Estimation results for MATSIM utility function. Only statistically significant
parameters were included.

PlanomatX

On the other hand, the parameters estimates for the S-shaped utility function are more difficult
to interpret, especially the values of the inflection point α, which is the duration when the utility
function reaches its maximum. For education and work, this parameter is around 2 hours, which
means that beyond this duration, the utility increases at a decreasing rate (satiation effect). The
fact that longer durations are usually scheduled for these activities suggests that the time allocation
for education and work is more constraint-driven than utility-driven. For shopping, we observe the
opposite. The inflection point is at a very high duration as compared to the typical values in the
dataset. However, the negative slope suggests a decreasing utility.

Comparison of utilities

Figures 2-5 illustrate the utilities as functions of activity duration for education, work, leisure and
shopping.

Given the similarity of their specifications, the OASIS and MATSIM utility functions have compa-
rable trends for the education and work activities. The OASIS utility seems to converge towards
the PlanomatX utility for very long durations.

For leisure and shopping, the results are more heterogeneous. For the MATSIM specification, the
impact of duration seems negligible as the utility varies very little with duration. For these two
activities the OASIS function and PlanomatX are in concordance: about the inflection point for
leisure, and the overall decreasing trend for shopping.

These results show that a linear-in-parameter specification is able to capture overall utility trends.
An in-depth investigation of simulation results is now required to understand the impacts of the
utility specifications on results (accuracy and interpretability), and on model performance.
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Param. Rob. Rob. Rob.
Parameter estimate std err t-stat p-value

Education: Umax 4.79 0.443 10.8 0.00
Education: α 1.57 0.202 7.75 9.1e-15
Education: β 7.56 4.84 1.56 0.119
Leisure: Umax 4.47 0.379 4.50 9.1e-15
Leisure: α 0.668 0.213 3.13 0.00172
Leisure: β 2.53 0.686 3.69 0.000225
Shopping: Umax 2.12 0.333 6.36 2.04e-10
Shopping: α 3.66 0.975 3.75 0.000175
Shopping: β -4.85 2.3 -2.1 0.0353
Work: Umax 3.31 0.637 5.19 2.08e-07
Work: α 2.07 0.0459 45. 0.00
Work: β 11.5 0.792 14.5 0.00

Summary statistics
L(0) = −454.1869
L(β̂) = −187.871
ρ̄2 = 0.56

Table 3: Estimation results for PlanomatX utility function, considering Umin
a = 0, and

γa = 1.

Figure 2: Utility of activity duration for education
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Figure 3: Utility of activity duration for work

Figure 4: Utility of activity duration for leisure

Figure 5: Utility of activity duration for shopping
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4 Conclusions

In this work, we have tested three different utility specifications to explain activity-travel behaviour,
with a particular emphasis on the sensitivity to activity duration. The contributions of this work
are a demonstration of the estimation methodology of the OASIS framework applied to different
utility functions. In addition, we have compared some behavioural insights provided by the three
models, and started identifying focus areas for further investigations. Therefore, future work will
include:

1. A comparative analysis of simulation outputs (schedule distributions) using the three utility
functions. This analysis will be based on dedicated indicators of performance.

2. A sensitivity analysis to the model inputs, in particular to the size of the choice set, and its
composition (e.g. diversity of the alternatives).

3. A relaxation of some assumptions on the values of the parameters. For instance, estimating
the parameters of the PlanomatX function without the assumption of γa = 1.

4. An investigation of the influence of other variables and their effect on the utility of activities.
For example, travel time and cost or socio-demographic characteristics.
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