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Short summary

Carpooling is known to have lower CO2 emissions compared to driving individually. One of the
limitations of carpooling is that matched drivers and passengers need to have similar itineraries,
or their generalized costs will be high. By allowing a single transfer at a designated transfer hub,
their itineraries need to be only partially similar. We allow for transfers within the carpooling
system and between carpooling and public transport. Thereby, we include travel time uncertainty
to evaluate its effect on carpooling with transfers. We model the ride-matching problem with
transfers and travel time uncertainty as a two-stage stochastic programming problem. The results
indicate that a single transfer hub can already reduce the average generalized cost of passengers by
15%. When travel times are uncertain, commuters tend to find a match that performs relatively
well in every traffic situation, rather than one that performs well for only one scenario.
Keywords: Carpooling, Ride-Matching, Ride-Sharing, Transfers, Uncertain Travel Time

1 Introduction

Transport accounts for a large share of global CO2 emissions. According to IEA (2022) cars and
buses for passenger transport constitute 45.1% of transport emissions, including freight transport.
Statistics gathered by the Center for Sustainable Systems, University of Michigan (2021) show
that in 2019 the average car occupancy in the United States was 1.5 and in 2017 24% of the U.S.
households had 3 or more vehicles. Carpooling as an alternative to traveling alone by car is known
to reduce CO2 emissions directly and a well-functioning carpooling system is expected to reduce
car ownership in the long term.

One of the main limitations of direct carpooling is that a pairing of drivers and passengers needs
to be found with similar itineraries (in space and time). By allowing transfers, a larger set of
potential matches is available for drivers and passengers since the itineraries only need to be par-
tially similar, as they spend only a part of their trip together. Thereby, passengers are allowed to
transfer to and from public transport. A graphic illustration is displayed in Figure 1. Carpooling
or ride-matching models with transfers have been considered before by, among others, Herbawi &
Weber (2012); Masoud & Jayakrishnan (2017); Huang et al. (2018); Lu et al. (2020).

Despite their benefit, transfers may impose additional difficulties when travel time is uncertain.
Passengers and drivers may carry on their first-leg delays to the second leg, thereby influencing
their match, or they may fully miss their connection. In the presence of uncertainty, transfers can
make carpooling with transfers less appealing due to their effect on tardiness and uncomfortable
and unanticipated waiting times. Long et al. (2018) consider a bi-objective ride-sharing-matching
model under travel-time uncertainty. They consider delay and schedule delay penalties that may
change according to this uncertainty.

We consider a matching framework for carpooling with transfers and uncertainty in travel time.
We allow for transfers within the carpooling system and between carpooling and public transport.
By considering uncertainty in travel time, schedule delay penalties of potential matches can de-
pend on this uncertainty, similar to Long et al. (2018). In our problem, potential matches may be
infeasible for some uncertain scenarios which can therefore affect the optimal matching. We model
the matching problem with transfers and public transport as a deterministic integer programming
problem. We extend this model to a two-stage stochastic programming problem where travel time
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uncertainty forms the division between first- and second-stage decisions. Matches on the first leg
of the trip are made under uncertainty, whereas second-leg matches are made afterward when
information on travel time is gathered.

Origin Transfer
point Destination

Figure 1: Graphic illustration of transfers

2 Methodology

We consider a matching problem of carpooling drivers and passengers. Every individual has a
specific value of time, scheduling preferences, and desired arrival time. Unlike ride-hailing services,
drivers are relatively inflexible in the system we consider. Drivers are only willing to perform
pickups at their own origin or at a dedicated transfer hub along their route and are only willing to
perform drop-offs at their own destination or at a dedicated transfer hub along their route. Thereby,
drivers determine the departure time only based on their own schedule delay preferences and ignore
those of the passengers. The reason for this is that in a complex system where drivers take multiple
passengers and passengers take multiple drivers, coordinating jointly optimal departure times can
be extremely difficult both theoretically and in practice. Contrary to the common carpooling
approach where passengers spend their full trip with a single driver, we allow passengers to transfer
at designated transfer hubs. These transfer hubs have connections to public transport services and
allow for transfers between two carpooling drivers. We only allow one transfer to limit the in-
comfort of transfers and include the inconvenience of transferring and waiting in the generalized
cost formulation.

Determinisitic Formulation

The deterministic matching approach is based on a set of predefined passenger paths. Let I be
the set of passengers, J the set of drivers, and H the set of transfer hubs. Given that the possible
number of matches for passengers is polynomial, we can generate all possible paths in advance. We
let the drivers set the departure times, such that the costs of passenger paths are independent of
each other. Then we only need to consider that drivers may take multiple passengers at the same
time, but only on the same route, and that they can pick up new passengers at the transfer point.

Every individual has an origin oi, a destination di and a desired arrival time t∗i . Let K be the set
of passenger paths and let eik = 1 if passenger path k corresponds to passenger i, and 0 otherwise.
The cost of passenger path k is denoted by ck, which only contains the cost for passengers. By
definition, drivers do not incur any scheduling delay costs nor make a detour. Therefore, we as-
sume they are fully compensated for the inconvenience of sharing their car and their costs are not
included in the objective function. Let decision variable xk = 1 if passenger path k is chosen and
0 otherwise. Let qj be the capacity of driver j, that is, the number of passengers driver j is able
to transport at the same time. We distinguish between the following three kinds of trips:

• Direct trip: a0jk = 1 if driver j contributes to passenger path k through a direct trip.
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• First leg of indirect trip: a1hjk = 1 if driver j contributes to passenger path k through a
first-leg trip to transfer hub h.

• Second leg of indirect trip: a2hjk = 1 if driver j contributes to passenger path k through a
second-leg trip from transfer hub h.

We use decision variable yjh to define through which transfer hub driver j is going. This allows to
formulate the deterministic matching problem as follows:

(P1) minimize
∑
k∈K

ckxk (1a)∑
k∈K

eikxk = 1 ∀i ∈ I (1b)

∑
k∈K

a0jkxk ≤ qj

(
1−

∑
h∈H

yjh

)
∀j ∈ J (1c)∑

k∈K

a1hjkxk ≤ qjyjh ∀j ∈ J, h ∈ H (1d)∑
k∈K

a2hjkxk ≤ qjyjh ∀j ∈ J, h ∈ H (1e)∑
h∈H

yjh ≤ 1 ∀j ∈ J (1f)

xk ∈ B ∀k ∈ K (1g)
yjh ∈ B ∀j ∈ J, h ∈ H (1h)

The objective (1a) is to minimize the cost of all matches. Every passenger needs to be matched
to exactly one driver, which is enforced by Constraints (1b). Feasibility of the solution from the
perspective of a driver is enforced through Constraints (1c) - (1e). The feasibility of the solution
from the perspective of a passenger is enforced directly on the set of paths K. That is, the set K
only contains paths that are feasible for a passenger. On every leg, a driver j ∈ J may have at most
qj passengers in their car, which is enforced jointly by Constraints (1c), (1d) and (1e). A driver
may either serve passengers directly from their origin to their destination or through a transfer
point, but not both. Constraints (1f) ensure that a driver only makes a stop at one transfer point.

In the remainder of this section, we discuss in detail the three types of paths that we consider
and the corresponding parameter values in P1. For this, we let α be the value of time spent in a
car, β the penalty for every unit of time an individual is early, and γ the penalty for every unit
of time an individual is late. Waiting time is penalized by αwait and the value of time spent in
public transport is defined as αpt. Travel time between o and d is defined as tt(o, d). For the sake
of notation, these parameters are all homogeneous, but the formulation allows for heterogeneous
parameter values.

Public Transport Paths
Every passenger i ∈ I has the option to take public transport instead of carpooling. Public trans-
port has a fixed cost per unit of time such that ck = αpttt(oi, di).

Direct Carpool Paths
For every passenger i ∈ I, a direct match can be found with a driver j ∈ J if oi = oj and di = dj .
As the driver selects the departure time to minimize her own cost, the arrival time at the final
destination is equal to the desired arrival time of the driver, possibly imposing schedule delay costs
on the passenger. For a match between i ∈ I and j ∈ J , eik = 1, a0jk = 1 and all other parameters
are equal to 0. The cost of this direct match are as follows:

ck = αtt(oi, di) + β(t∗i − t∗j )
+ + γ(t∗j − t∗i )

+ (2)

Indirect Carpool Paths
For the sake of notation, we define t∗j (h) as the desired arrival time of driver j at transfer hub h if
he travels through that hub. This is simply computed as t∗j (h) = t∗j − tt(h, dj).

We first consider the path where the passenger takes public transport on one of the two legs.
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For a path where only the first leg is a carpooling leg, if passenger i ∈ I and driver j ∈ J are
matched with a transfer at hub h ∈ H, they must share their origin oi = oj and hub h must be on
the path of driver j. For a path where only the second leg is a carpooling leg, if passenger i ∈ I
and driver j ∈ J are matched with a transfer at hub h ∈ H, they must share their destination
di = dj and hub h must be on the path of driver j. Given the fixed cost of public transport and
the fact that we do not consider a schedule for public transport, the cost for first-leg or second-leg
carpooling are highly similar and given as follows:

ck = αpttt(h, di) + αtt(oi, h) + β[t∗i − t∗j (h)− tt(h, di)]
+ + γ[t∗j (h) + tt(h, di)− t∗i ]

+ (3)

ck = αpttt(oi, h) + αtt(h, di) + β[t∗i − t∗j (h)− tt(h, di)]
+ + γ[t∗j (h) + tt(h, di)− t∗i ]

+ (4)

For paths that consist of two carpooling legs, we consider a passenger i ∈ I and two drivers
j1, j2 ∈ J where j1 takes i on the first leg and j2 takes i on the second leg with a transfer at
transfer hub h. Similar to before, this is only feasible if oi = oj1 , di = dj2 and h is both on the
path of j1 and j2. Thereby, t∗j1(h) ≤ t∗j2(h) to ensure that the passenger is dropped off at the
transfer hub before the scheduled pickup. The cost for the passenger is then defined as follows:

ck = α[tt(oi, h)+tt(h, di)]+αwait[t∗j2(h)−t∗j1(h)]+β[t∗i −t∗j2(h)−tt(h, di)]
++γ[t∗j2(h)+tt(h, di)−t∗i ]

+

(5)

Stochastic Formulation

To allow for uncertainty in travel times, we adapt our formulation to a two-stage stochastic pro-
gramming problem. The matching is determined a-priori but may be adapted based on the observed
state of the system (i.e. the travel times). The first leg of every driver and passenger is fixed and
cannot be altered after observing the state. This can be seen as a contract between the driver and
the passenger. The second leg, however, may be changed after observing the state of the system.
We assume the state is observed after the first leg has been fixed (i.e., the contract has been ne-
gotiated) but before the second leg commenced. With modern technologies, commuters are aware
of traffic conditions during or shortly before their trip. Let Ω be the uncertainty set and ω ∈ Ω a
realization of the uncertain travel times. We also refer to such a realization of the uncertain travel
times as a scenario.

All variables and parameters are altered to be dependent on the scenario ω. This means that
in stead of xk we use xk(ω) and in stead of yjh we use yjh(ω). In addition to this, the cost of path
k also depends on the scenario as it influences travel time and may even make paths infeasible.
Therefore, we change ck to ck(ω), where ck(ω) = ∞ if it path k is infeasible for scenario ω. This
may happen, for example, when the passenger arrives at the transfer point after their driver has
already departed because of a delay. We denote p(ω) the probability of scenario ω occuring, such
that p(ω) ≥ 0,

∑
ω∈Ω p(ω) = 1.

We enforce that all first-stage decisions are the same for all scenarios. Specifically, if driver j
is involved in path k for scenario ω that is a direct match from origin to destination, he must
commit to the same direct path in any other scenario. Therefore, as direct paths only have one
leg, the chosen paths are identical for every scenario and are used to minimize the expected cost.
This is enforced through

a0jkxk(ω) = a0jkxk(ω
′) ∀j ∈ J, k ∈ K,ω, ω′ ∈ Ω (6)

For an indirect path, only the first leg is fixed. In this case, the full path need not be the same,
as long as the same driver goes to the same hub in both scenarios. In addition to this, we impose
that both paths need to correspond to the same passenger. To enforce this, we use the following
set of constraints. By enforcing the matched driver-passenger pair as well as the hub at which the
passenger is dropped to be equal across scenarios, we guarantee that first-leg matches are fixed in
advance.

∑
k∈K

eika
1h
jkxk(ω) =

∑
k∈K

eika
1h
jkxk(ω

′) ∀i ∈ I, j ∈ J, h ∈ H,ω, ω′ ∈ Ω (7)

The full formulation of the stochastic programming problem, to which we refer as P2, is given as
follows:
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(P2) minimize
∑
ω∈Ω

∑
k∈K

p(ω)ck(ω)xk(ω) (8a)∑
k∈K

eikxk(ω) = 1 ∀i ∈ I, ω ∈ Ω (8b)

∑
k∈K

a0jkxk(ω) ≤ qj

(
1−

∑
h∈H

yjh(ω)

)
∀j ∈ J, ω ∈ Ω (8c)∑

k∈K

a1hjkxk(ω) ≤ qjyjh(ω) ∀j ∈ J, h ∈ H,ω ∈ Ω (8d)∑
k∈K

a2hjkxk(ω) ≤ qjyjh(ω) ∀j ∈ J, h ∈ H,ω ∈ Ω (8e)∑
h∈H

yjh(ω) ≤ 1 ∀j ∈ J, ω ∈ Ω (8f)

a0jkxk(ω) = a0jkxk(ω
′) ∀j ∈ J, k ∈ K,ω, ω′ ∈ Ω (8g)∑

k∈K

eika
1h
jkxk(ω) =

∑
k∈K

eika
1h
jkxk(ω

′) ∀i ∈ I, j ∈ J, h ∈ H,ω, ω′ ∈ Ω (8h)

xk ∈ B ∀k ∈ K (8i)
yjh ∈ B ∀j ∈ J, h ∈ H (8j)

The Objective (8a) is to minimize the expected costs, which is a linear function weighted by the
probability of each scenario occurring. Constraints (8b) to (8f) are the same as in (P1), but
extended them with the scenario dependency ω. Constraints (8g) ensure that the same direct
paths are chosen for every scenario. Constraints (8h) enforce the first leg of drivers to be the same
on indirect paths and that they carry the same passenger.

3 Results and discussion

We evaluate our model on a circular city consisting of 33 nodes, as depicted in Figure 2. Every
passenger and driver has an origin and destination at one of the 33 nodes. Origins are more likely
to be in the suburbs (the outer rings) whereas destinations are more likely to be in the city center.
Transfer hubs can be at any of the nodes in the network. Drivers can perform a pick-up or a
drop-off at one of the transfer hubs, but only if the hub is on their shortest path. We consider 1000
drivers and 500 passengers. Desired arrival times are drawn from a truncated normal distribution
with a mean at 8:00 and a standard deviation of 1 hour. The distribution is truncated such that
we only allow desired arrival times between 6:30 and 9:30.

The parameter settings are homogeneous among the entire population and are defined as fol-
lows. The value of time spent in a car α is equal to 6.4[$/h]. Earliness and lateness are penalized
with β and γ equal to 3.9[$/h] and 15.21[$/h] respectively. The value of time in public transport
αpt is higher and is set equal to 11.0[$/h]. In addition to this, public transport has a fixed cost of
2.0$ per trip to compensate for waiting times. Waiting time is penalized by αwait which is equal
to 13.5[$/h] such that β < α < αpt < αwait < γ, consistent with the literature.

Figure 2: Circular city with the distribution of origins (left) and destinations (right)
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Influence of transfers on cost and mode choice

We consider the influence transfers make on the average cost per individual in the deterministic
system. The results are displayed in Figure 3 where the left-hand panel displays the modal split
of passengers and the right-hand panel displays the composition of the average cost of passengers.
Clearly, when there are no transfer hubs, the only possible mode choices are direct carpooling and
public transport. By opening transfer hubs, a modal shift to the two modes that use transfers
is observed. Especially the number of passengers carpooling on two separate legs increases. The
reason for this is that by using a transfer, more options exist for matching to someone with the
same destination and a similar desired arrival time, at the cost of waiting at the transfer point.
The number of direct matches may be limited as the origin and destination of the passenger and
driver need to be identical and the desired arrival time needs to be somewhat similar.

By using a single transfer hub in the center of the network, the average cost decreases from
14$ to 12$ (≈ 15%). Increasing the number of transfer hubs allows a further decrease in the
average cost, but not nearly as substantial as for the first hub in the center. When all 9 hubs
are opened, the average cost decreases to 11$ (≈ 22%). We emphasize that carpooling benefits
from economies of scale when the number of commuters increases. The reason for this is that the
matching opportunities increase, which decreases the expected cost of a match.

Modal split of passengers
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Figure 3: Statistics for a varying number of transfer hubs

Distribution of passengers by desired arrival time

We evaluate the distribution of passengers by desired arrival time and the mode they use to com-
mute. We consider the deterministic system with only one hub in the center of the network. The
results are displayed in Figure 4 where the left-hand panel displays the number of passengers us-
ing a mode and the right-hand panel displays the proportion of passengers with a specific desired
arrival time using a mode.

The proportion of passengers using public transport is the highest in the tails. The reason for
this is that the number of potential matches with identical origins and destinations and similar
desired arrival times is low since the number of individuals here is rather low. This effect is more
apparent for passengers with an early desired arrival time. When these passengers match to a
driver, it is highly likely that the desired arrival time of the driver is later than that of the pas-
senger, and therefore the passenger will suffer from lateness. As lateness is penalized heavier than
earliness, the effect is more apparent at the start of the morning commute than it is at the end.
At the peak of the rush hour, the number of carpoolers is the highest. We see a slight skewness
towards later desired arrival times, which follows the same reasoning as stated before.

Stochastic Programming Results

We analyze the results of the stochastic programming problem, using three scenarios (|Ω| = 3),
with all travel times at 100%, 125%, and 150% of the free-flow travel times, respectively. A selec-
tion of 50 passengers is made to display the matching, where a bar represents a match to a driver.
The color of the bar, as well as the index displayed on the bar, identifies the driver. The first bar
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Figure 4: Distribution of passengers by desired arrival time and mode

displays a first-leg match, the second bar displays a second-leg match and the full bar represents a
direct match. When no bar is given on a leg, the passenger uses public transport on this leg. The
results are given in Figure 5.

We observe that in line with Constraints (8g) and (8h) the direct matches and first-leg matches
are the same for all scenarios. Approximately 75% of the matches are identical across all three sce-
narios, whereas for the remaining 25% the passenger either changes mode or driver on the second
part of the trip. We compare the result to the wait-and-see benchmark, where Constraints (8g)
and (8h) are relaxed. This is displayed in Figure 6. For the wait-and-see benchmark only 50% of
the matches are identical. The wait-and-see benchmark shows that the higher the travel times (for
scenarios 2 and 3) the fewer matches are optimal. For the recourse problem, however, a middle
ground needs to be found since the matching cannot be fully adapted to the exact traffic situation.
Therefore, we observe slightly fewer matches in scenario 1 for the recourse problem, whereas we
observe significantly more matches for scenario 3 compared to the wait-and-see problem.
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Figure 5: Gantt chart of matching for the recourse problem.
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Figure 6: Gantt chart of matching for the wait-and-see benchmark problem.

4 Conclusions

We conclude that transfers can significantly reduce the average costs of commuters. Carpooling
with transfers partially replaces direct carpooling as well as public transport as a mode of transport.
It is especially beneficial for commuters during the peak of the commute, whereas commuters in
the tails are usually better off taking public transport. In the case of stochastic travel times,
we observe a large share of the commuters stick to the same mode and match for each scenario.
However, 25% of the commuters may change their mode or match. We also observe that due to
uncertainty, the number of carpoolers generally decreases.
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