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Short summary

Shared Mobility Services (SMS), e.g., Demand-Responsive Transit (DRT) or ride-sharing, can
improve mobility in low-density areas, often poorly served by conventional Public Transport (PT).
Such improvement is mostly quantified via basic performance indicators, like wait or travel time.
However, accessibility indicators, measuring the ease of reaching surrounding opportunities (e.g.,
jobs, schools, shops, ...), would be a more comprehensive indicator. To date, no method exists
to quantify the accessibility of SMS based on empirical measurements. Indeed, accessibility is
generally computed on graph representations of PT networks, but SMS are dynamic and do not
follow a predefined network. We propose a spatial-temporal statistical method that summarizes
observed SMS trips in a graph on which accessibility can be computed. We apply our method to
a MATSim simulation study concerning DRT in Paris-Saclay.
Keywords: Accessibility; Public Transport; Shared Mobility;

1 Introduction

Location-based accessibility measures the ease of reaching surrounding opportunities via transport
(Miller (2020)). Accessibility provided by conventional PT is generally poor in low-demand areas,
e.g., suburbs (Badeanlou et al. (2022)), because a high frequency and high coverage service in such
areas would imply an unaffordable cost per passenger. Poor PT accessibility in the suburbs makes
them car-dependent, which prevents urban regions from being sustainable ((Saeidizand et al., 2022,
Section 2.2)). SMS, e.g., Demand-Responsive Transit (DRT), ride-sharing, carpooling, car-sharing,
are potentially more efficient than conventional PT in the suburbs (Calabrò (2023)). However, their
current deployment is commonly led by private companies targeting profit maximization. This may
turn SMS into additional source of congestion and pollution (Henao & Marshall (2019); Erhardt
et al. (2019)).
We believe that SMS deployment should be overseen by transport authorities under the logic of
accessibility improvement. To this aim, a method is needed, able to compute impact of SMS on
accessibility, based on empirically observed trips. To the best of our knowledge, this paper is
the first to propose such a method. Chandra et al. (2013) study how DRT improves connection
to conventioal PT stops, without considering the impact on accessing opportunities. Nahmias-
Biran et al. (2021) and Zhou et al. (2021) calculate based accessibility from Autonomous Mobility
on Demand, based on utilities perceived by agents within simulation. By contrast, our method
computes accessibility solely based on observed SMS trip times, either from the real world or
simulation. A first attempt of integrating SMS into the graph-based description of PT is done
by Le Hasif et al. (2022). However, they use analytic models to model SMS performance and
thus fail to give real insights adapted to the areas under study. Our effort consists instead of
estimating accessibility from empirical observations via spatial-temporal statistics. General Transit
Feed System (GTFS) is the standard data format for PT schedules. Recently, the GTFS-Flex
extension allows also describing SMS (Craig & Shippy (2020)). Although uur estimates could thus
be fed into GTFS-Flex data, for the sake of simplicity, we use plain GTFS instead.
Our contribution consists in developing a spatial-temporal statistical pipeline to transform SMS
trip data observations in a graph representation, on top of which well-established accessibility
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Figure 1: Time-expanded graph, representing two trips on line A and one trip on line B,
as well as a potential change.

computation can be performed. The observations that can be taken as input might come from
real measurements or from simulation. This paper’s observations come from a MATSim simulation
study of DRT deployment in Paris Saclay, from Chouaki et al. (2023).
By providing a first method to compute the accessibility of SMS on empirical observations, this
work can contribute to a better understanding of the potential of SMS and guide their future
deployment.

2 Methodology

Accessibility

As in (Biazzo et al. (2019)), the study area is tessellated in hexagons with a grid step of 1km,
whose centers u ∈ R2 are called centroids and denoted with set C ⊆ R2. Each hexagon contains
a certain quantity of opportunities, e.g., jobs, places at school, people. With Ou we denote the
opportunities in the hexagon around u and with T (u,u′, t) the time it takes to arrive in u′, when
departing from u at time t. As in Miller (2020), accessibility is the amount of opportunities that
one can reach departing from u at time of day t within time τ :

acc(u) ≡
∑

u′∈C(u,t)
Ou′ . (1)

C(u, t) = {u ∈ C|T (u,u′, t) ≤ τ} is the set of centroids reachable within τ . By improving PT, such
set can be enlarged such as to consent to reach more opportunities. In this work, the opportunities
are the number of people (residents) that can be reached. T (u,u′, t) is always computed on a
graph representation of the transport network. However, SMS are not based on any network. Our
effort is thus to build a graph representation of SMS, despite the absence of a network model.

Time-Expanded Graph Model of conventional PT

Inspired by Fortin et al. (2016) and Le Hasif et al. (2022), we model PT as a time-expanded graph G,
compatible with the GTFS format. The nodes of G are stoptimes. Stoptime (s, t) indicates the
arrival of a PT vehicle at stop s ∈ R2 (modeled as a point in the plane) at time t ∈ R. Different
trips on a certain line are represented as sequences of different stoptimes, as in Figure 1, as well
as potential line change, within 15 minutes walk, assuming 5 Km/h walk speed, if it is possible to
arrive at the new line on time. When a user departs at time t0 from location x for location x′,
they can simply walk (but no more than the maximum walk time). Or they can walk to s, board a
PT vehicle at t (corresponding to a stoptime (s, t), use PT up to a stoptime (s′, t′) and from there
walk to x′. The arrival time at x′ will be t′ plus the time for walking. Users are assumed to always
choose the path with the earliest arrival time. Path computation is performed within CityChrone
(Biazzo et al. (2019)). No capacity constraints are considered.

Integration of shared mobility into the time-expanded graph

SMS is assumed to provide a feeder service to traditional PT. In a feeder area F(s) ⊆ R2 around
some selected stops s (which we also call hubs), SMS provide connection to and from s. The set
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Figure 2: Hub and virtual trips provided by SMS

of centroids in such an area is C(s) = C ∩F(s). In this section, we will focus on access trips (from
a location to a PT stop) performed via SMS. The same reasoning applies to egress trips, mutatis
mutandis. We assume to have a set O of observations. Each observation i ∈ O corresponds to an
access trip and contains:

• Time of day ti ∈ R when the user requested a trip to the flexible service

• Location xi ∈ R2 where the user is at time ti

• Station si where the user wants to arrive via the SMS feeder service

• Duration wi indicating the wait time before the user is served: it can be the time passed
between the time of request and the time of pickup from a vehicle, in case of ride-sharing,
DRT or carpooling; it can be the time to wait until a vehicle is available at the docks in a
car-sharing or bike-sharing system.

• Travel time yi: time spent in the SMS vehicle to arrive at s.

We interpret yi and wi as realizations of spatial-temporal random fields (Handcock & Wallis
(1994)): for any time of day t ∈ R and physical location x ∈ F(s), random variables W s(x, t), Y s(x, t)
represent the times experienced by a user appearing in t and x, for any stop s. In the following
subsection we will compute estimations ŵs(u, t), ŷs(u, t) of expected values E[W s(u, t)],E[Y s(u, t)]
at centroids u ∈ C(s).
To integrate SMS into PT graph G, SMS are represented as a set of “virtual” trips, running between
centroid u ∈ C(s) and hub s (Figure 2). Each trip has travel time ŷs(u, t). The access connection
between centroid u and hub s is modeled as a sequence of trips, corresponding to stop times (u, tj),
for different values of departure time. We thus have to compute the list of such departure times.
To do so, we interpret the inter-departure time between sich trips as a random field Hs(x, t), which
represent a “virtual” headway. The value of such an interval in x and t is also a spatial-temporal
random field. We use the common approximation Hs(x, t) = 2 · W s(x, t), idealizing the SMS
headway as regular so as to apply (2.4.28) from Cascetta (2009). Therefore, we separate stoptimes
by 2 ·ws(u, t). More precisely, the stoptimes corresponding to access trips departing from centroid
u to hub s are:

(u, t0),

(u, tj) where tj = tj−1 + 2 · ŵs(u, tj−1)for j = 1, 2, until 11:59 pm, (2)
(u, tj) where tj = tj+1 − 2 · ŵs(u, tj+1)for j = −1,−2, until 00:00 am.

Correspondent stoptimes are added to represent the arrival of access trips (s, tj + ŷs(u, tj)) and
an edge between each departure stoptime and the respective arrival stoptime is added. A similar
process is applied for egress trips. At the end of the described process, time-expanded graph G
is enriched with stoptimes and edges representing SMS trips. Having done so, it is possible to
reuse accessibility calculation methods for time-expanded graphs, such as CityChrone Biazzo et al.
(2019), with no modifications required.

Estimation of Waiting and Travel Times

We now explain how we construct estimation ŵs(u, t) used in the previous subsection, for access
SMS trips only. Similar reasoning can be applied to ŷs(u, t) and egress trips. We assume random
field W s(x, t) is approximately temporally stationary within each timeslot:

W s(x, t) = W s(x, tk), ∀x ∈ R2,∀t ∈ [tk, tk+1[,∀ station s (3)
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Figure 3: Implementation pipeline. CityChrone is from Biazzo et al. (2019).

For any timeslot, we thus just need to find estimation ŵs
tk
(u) of the expected values of random

field W s
tk
(x) ≡ W s(x, tk). First the observations O are projected onto time-slot [tk, tk+1]:

Os
tk

≡ {observation i = (xi, wi, yi)|i ∈ O, t ∈ [tk, tk+1[, i is related to an access trip to s} (4)

Estimation ŵs
tk
(u) is computed by Ordinary Kriging ( AA.VV. (2018)) on the observations Os

tk
as

a convex combination of observations wi:

ŵs
tk
(x) =

∑
i∈Os

tk

λi · wi (5)

In short (details can be found in Section 19.4 of Chilès & Desassis (2018)), coefficients λi are
computed based on a semivariogram function γs

tk
(d), which obtained as a linear regression model,

with predictors di,j (distances between all pair of observations) and labels γi,j , which are called
experimental seminariances:

γi,j ≡
1

2
· (wi − dj)

2 (6)

The underlying assumption here is that correlation between wait times in different locations van-
ishes with the distance between such locations. The semivariogram gives the “shape” of this
vanishing slope. In estimation (5), closer observations will have a higher weight. Under hypothesis
on spatial stationarity and uniformity in all directions (Kriging Interpolation (2023)), Theorem 2.3
of Yakowitz & Szidarovsky (1985) proves that Kriging gives an aymptotically biased estimator: as
the number of observations tends to infinite, ŵs

tk
(x) tends to the “true” E[W s

tk
(x)].

3 Implementation

The methodology of Section 2 is implemented in a Python pipeline, which we release as open source
(Diepolder (2023)) and is depicted in Figure 3.

1. We first get centroids and cells performing the tessellation via CityChrone.

2. We read the file containing the observations (SMS trips). Such a file can be a simulation
output or measurements of real SMS. Each observation includes the same information as in
page 3. Observations are stored in a dataframe.

3. We assume SMS is deployed as feeder (as it is the case for the MATSim simulation on which
we perform our analysis). Therefore, we can classify every SMS trip as either access or
egress, depending on whether the origin or the destination is a PT stop.

4. To establish the feeder area F(s), we find among the observations O the furthest cell from
s in which a trip to/from s has occurred. All cells within such a distance, are assumed to
be in F(s). Observe that feeder areas of different hubs may overlap.

5. We group observations in timeslots (Figure 9).

6. In each time slot [tk, tk+1[ and each centroid u around each stop s, we perform Kriging via
library pyInterpolate (Moliński (2022)) to obtain estimations ŵs(u) and ŷstk(u).
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Table 1: Parameters used for the numerical results.

Parameter Value Reference
Side of a hexagon (tessellation) 1km Badeanlou et al. (2022)
τ (Equation (1)) 1 hour Badeanlou et al. (2022)
Total number of DRT trips 14700
- access trips 5289
- egress trips 9412
Total number of hubs 16
Walk times Computed via OpenStreetMap
Population Distribution from the simulation scenario from Chouaki et al. (2023)

7. We obtain stoptimes and edges using the estimations above, as specified in (2). We add
stoptimes and edges to the GTFS data of conventional PT, following the specifications in
GTFS Reference Document (2023).

8. We give the obtained graph to CityChrone, which will give us accessibility scores in all the
centroids.

4 Results and discussion

Data Source of the observations

The observation dataset in this study comes from a MATSim simulation, from Chouaki & Puchinger
(2021); Chouaki et al. (2023), of door-to-door Demand-Responsive Transit (DRT), deployed as a
feeder to and from conventional PT, in Paris-Saclay. The area in which DRT is deployed is depicted
in Figure 4, but the entire Paris Region is simulated. Scenario parameters are in Table 1.

Analysis of Temporal and Spatial Patterns of DRT trips

Figure 5 clearly shoes morning peak [7 : 00, 10 : 00[, evening peak [16 : 00, 19 : 00[ and off-peak
(all the other intervals).
In the following figures, the measures DRT trips toward/from all hubs, without distinguishing
between hubs. Figures 6 and 7 are negative results: wait and travel times (figures on the right) do
not appear to be spatially stationary (the distribution of values measured close to the related PT
stops is different than further). Therefore, our estimations are not guaranteed to be asymptotically
unbiased (page 4). In our future work, we will explore indirect estimation of wait and travel times
through other indicators, e.g., the detour factor of DRT, which respect the requirements for the
unbiasedness of Kriging.
Figure 8 shows that wait time follows expected peak/off-peak patterns. Values are generally slow
since the simulation is configured so that a DRT trip is accepted only if it the dispatcher predicts
it is possible to serve it within 10 minutes. All wait times exceeding this limits might be due to
the dispatcher not taking traffic correctly into account.

Estimation of Waiting and Travel Times

Figure 9 shows that timeslots of 1h preserve the temporal pattern of trips, so 1h should be preferred
to smaller timeslots, so as to perform Kriging with as many observations as possible.
Within each timeslot, estimation of wait and travel times is based on Kriging, which exploits spatial
correlation. First, we note in Figure 10 that travel times close to hubs are shorter than further
away. Then, we note that the experimental semivariance in Figure 11, i.e., the γi,j between pair of
observation i, j (Equation (6)), increases with the spatial distance between the observations: the
closer the observations, the more similar are the respective travel times measured therein.
Such trends are not as evident for wait times (Figure 12) although similarity between observations
still decay with distance (Figure 13).
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Figure 4: Hub Catchment Areas and Hub Locations. Each dot corresponds to the origin
of one trip observed during the simulation. The differentiation in color of the observed trip
origins indicates the catchment by different hubs

Figure 5: Trips over time. One trip is defined by the departure within the study area of
Paris Saclay. A trip consisting out of multiple legs (e.g. walk + drt + PT is considered as
one trip)

6



Figure 6: Relation between travel time and distance measures. Traveled distance is the
actual Km traveled by the user inside the DRT vehicle. Direct distance is the one from the
shortest road network road from the origin centroid to the hub. Beeline is the Euclidean
distance.

Figure 7: Relation between wait time and distance measures.

Figure 8: Mean Wait Time - A moving average of wait time during one day
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Figure 9: Comparison of different timeslot sizes. Values exceeding 10 minutes are not
depicted, as they are due to simulation events unpredictable for the SMS dispatcher

Figure 10: Spatial Trend Travel Time for access time, morning peak (evening and off-peak
show similar trends).

8



Figure 11: Spatial correlation of travel time observations

Figure 12: Spatial Trend Wait Time - No clear pattern can be identified, indicating low
spatial autocorrelation

Figure 13: Spatial correlation of wait time observations
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Figure 14: Headway and Travel Times of some examples of virtual DRT trips. Each
departure time of a virtual DRT trip is indicated by a cross. The respective travel time is
indicated by the y-axis value.

Figure 15: Sociality Score - Access Only - Morning Peak 07:00 - 10:00

Improvement of Accessibility Brought by DRT

Figure 14 shows headway and travel times of the virtual DRT trips added to the PT graph. We can
then compute accessibility on this graph. Note that accessibility varies with the time of day (1).
However, in the following figures we show averages over the time periods mentioned.
First, we study a system with DRT access services only (no egress). Figure 15 shows that the
catchment area is expanded, especially in the south: hexagons with no access to PT within 15
minutes walk, can now use PT. Figure 16 shows more clearly the improvement in accessibility
brought by improved access to PT thanks to DRT. As only access SMS feeder is added in Paris
Saclay, the areas outside Saclay do not show any changes, except sligth improvement in some
locations, for instant south of Versaille, possibly due to the possibility for travelers starting from
there to make changes in Saclay, which are enhanced by DRT.
Accessibility improvements are even greater in peak hours (Figures 17 and 18, as DRT compensates
for the low frequency of conventional PT.
Figure 19 shows the improvement in accessibility when both access and egress trips are added, av-
eraged over the entire day. Improvement is much greater than the access-DRT only case. Moreover,
improvement is also visible also outiside Saclay: users from everywhere can now reach opportunities
in Saclay faster, thanks to DRT egress connections.
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Figure 16: Sociality Score Improvement - Access Only - Morning Peak 07:00 - 10:00

Figure 17: Sociality Score - Access Only - Off Peak 10:00 - 16:00

11



Figure 18: Sociality Score Improvement - Access Only - Off Peak 10:00 - 16:00

Figure 19: Sociality Score Improvement - Access & Egress - Full Day 05:00 - 23:00
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5 Conclusions

We proposed a method to compute the impact of SMS on accessibility, based on empirical ob-
servations of SMS trips. Our method can support transport agencies and authorities in future
deployment of SMS. In our future work, we will empirically validate the results by running simu-
lations where we replaced simulated SMS with our estimated virtual trips. Finally, we will apply
our method to car- or bike-sharing feeder and, possibly, on observations from real deployments.
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