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Short summary

Proper positioning of ride-sourcing drivers may improve vacant travel times, waiting times, and
matching opportunities. Herein, we evaluate the potential repositioning response of drivers when
provided a guidance based on estimates of their earnings in a system offering ride-hailing (solo) and
ridesplitting (shared) rides. We develop a strategy that enumerates the best regional repositioning
destination based on the expected number of requests. A mixed continuous-discrete time Markov
Chain (MDCTMC) is developed to predict drivers activities and the revenues associated with
them. Our main findings indicate that the proposed approach is likely to retain drivers confidence
by improving their earnings compared to other drivers. We also show that it manages to decrease
the number of unserved requests compared to several state-of-art benchmarks and decreased the
deadheading.
Keywords: Macroscopic Fundamental Diagram; Markov chain; Shared mobility; Urban mobility.

1 Introduction

In a daily basis, geographical variations on the demand can create an imbalance between the
ride-sourcing service demand and supply of drivers to serve it, requiring actions to maintain a
satisfactory service quality. However, the fleets of this service are formed by drivers that are free
to make a series of decisions.
Therefore, the operator requires persuasion to relocate the available pool of drivers. Sadeghi &
Smith (2019), and Powell et al. (2011) incentivized drivers to decide on the location for the next
assignment. However, these strategies suffer from a reactive nature, mainly accounting for past
events. For instance, if an area faces recurrent losses of requests, customers will likely change their
travel option.
Other strategies emerge from the optimization of passenger-driver matching algorithms. These
strategies include Alonso-Mora et al. (2017) who sent empty vehicles to the location of recently
unsatisfied customers. Other examples can be found in Wang & Yang (2019) and references
therein. More recent studies, try to take actions before losing these passengers. Zhu et al. (2022)
uses coverage control to proactively position idle drivers. Although proactive, these approaches
assume full compliance, ignoring the individual objectives of human drivers.
From all the above, multiple challenges arise when positioning ride-sourcing currently available
drivers. The first challenge is to take the burden of identifying the most profitable options from
drivers with limited information, which only have access to limited information while accouting
for drivers’ future activities. A challenge remains in giving positions that minimizes unnecessary
overlapping in demand coverage among drivers. Finally, the strategy must ensure that compliant
drivers have an improved outcome to ensure compliance.
Herein, we evaluate the potential repositioning response of drivers when provided an estimate of
their earnings. The operator uses a mixed discrete-continuous time Markov chain (MDCTMC) to
estimate individual earnings for a given decision in the short-term. A microscopic process identifies
the positions and paths with the highest chances of matching. In a simulated study, we compared
the performance of guided drivers and unguided ones. We show that guided drivers have increased
revenues and are likely to follow the provided guidance in the long term. Finally, the proposed
strategy is compared to state-of-art strategies, achieving superior results in terms of lost requests
and deadheading.
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2 Identifying the best regional repositioning decisions

Assume that the objective of the repositioning strategy is to maximize the driver’s revenues by
maximizing the number of requests served during a short prediction horizon τ . Therefore, the
driver moves from the current position i to the potential position j for a significant portion of the
prediction. Then, we can summarize the expected number of requests a driver can cover Pij(t) in
this period as shown in Equations [1] and [2]. Finally, Equation [3] indicates the chosen path for
the driver.

Pij(t) =
∑
o∈R

∑
d∈R

P od
ij (t) (1)

P od
ij (t) =

∫ t+τ

t

podij (s) ds (2)

argmax
j

Pi = Pij(t) (3)

Where P od
ij (t) and podij (t) represent the number of requests and the demand rate with a regional

OD-pair od covered in the path between driver’s current location i and potential repositioning
destination j, respectively.
For the computation of the instantaneous covered demand rates podij (t) we consider: (i) geographical
distribution of demand, (ii) the associated path, and (iii) other drivers’ demand coverage. Figure
1 depicts these elements.
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Street network
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Repositioning path
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Figure 1: Illustration of the computation of podij (t).

3 Providing drivers with repositioning guidance based on rev-
enue forecasting

While drivers decide about repositioning by themselves, they have incomplete information about
the system conditions. Therefore, it is more likely that the service provider, who concentrates
information about all drivers and demand can use the mobile application to supply drivers with
repositioning information. The idea is to present the driver with the expected best decisions
whenever he becomes available for relocation.

Predicting drivers’ activities

Since ride-sourcing drivers offer rides for a profit, one should expect their decisions aiming to
maximize it. Therefore, to convince drivers about the best decisions they should be presented with
the consequence of their choices on their earnings.
To predict the earnings, it must identify the driver’s activities and actions in the near-future.
Inspired by Beojone & Geroliminis (2022), consider a list of activities A, such that A ∈ A indicates
a driver’s current activity. A set R with R heterogeneous regions, i.e., R = {1, 2, ..., R} illustrate
the urban network area, while the pair od ∈ R2 depicts a driver’s current and destination regions.
Therefore, Aod ∈ K describes a driver current state in the set of all possible states. Setting the list
of activities A = {I,RH, S1, S2} assumes that a driver can execute the following four activities
completing the state-space with a size |K| = |A| · |R|2.
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• Vacant (I): a vacant driver available for passengers.

• Ride-hailing (RH): a busy driver assigned to a ride-hailing passenger.

• Single ridesplitting (S1): a driver assigned to a single ridesplitting passenger.

• Shared ridesplitting (S2): a driver assigned to two ridesplitting passengers.

Assuming that the time spent in each activity is random, a Markov chain can depict a driver’s
movements. If the operator has detailed information on the urban area, then it can accurately tell
the time a driver needs to reach different areas in their repositioning activities.
Based on the previous, we can break a driver’s activity predictions into three phases. In the first
phase (a), a continuous time Markov chain (CTMC) represents the movements of a driver before
reaching the subsequent region in the repositioning path. In the second phase (b), a discrete time
Markov chain (DTMC) represents the driver reaching the boundary of the current region. Lastly,
in the third phase (c), after a driver reached the destination region, he is once again free to get
any assignments in the network. Therefore, obtaining a construct referred as a mixed discrete-
continuous time Markov chain (MDCTMC) model (Ingolfsson, 2005).

Repositioning movements: phase (a)

The provided shortest path is summarized in the sequence of regions r = (r1, r2, ..., rn) the driver
will cover on the movement between regions o and d (r1 = o and rn = d). Therefore, the transitions
in phase (a) include those from the starting region o until the current region l. Equation [4] further
details the dynamics for state probabilities πK

ij (t).

π̇I
ij(t) = − πI

ij(t)
∑
s∈S

λs
ij(t) (4a)

π̇RH
ij (t) = − πRH

ij (t)µRH
ij (t) + πI

ij(t)λ
H
ij (t) (4b)

π̇S1
ij (t) = − πS1

ij

(
µS1
ij (t) +

∑
h∈r

βh
ijλ

S
ih(t)

)
+ πI

ij(t)λ
S1
ij (t) + πS2

ij (t)ϑiij(t)µ
S2
ij (4c)

π̇S2
ij (t) = − πS2

ij (t)µS2
ij (t) +

∑
h∈R

λ̂S2
ihj(t) (4d)

Where the base transitions can be described through the arrival process λs
od(t) for a service s ∈ S =

{H,S} (ride-hailing and ridesplitting), and the service process µK
od(t), in which driver completes a

ride or transfers to a neighboring region. Note that any µK
ij (t) and λs

ij(t) is only defined for j = d

and i ∈ r1, ...rn−1, otherwise they have a value of 0. βh
od represents the ratio of od trips that will

pass through region h. ϑiij indicates the probability of the driver in S2ij having a passenger to
deliver in i before proceeding to j with the other one.

Repositioning boundary: phase (b)

The DTMC of phase (b) is depicted in Equation [5], which is supported by Equations [6] and [7]
detailing the transition matrix. Note that the only change from the end of phase (a) occurs from
state Iid to Ild, whereas the remaining states keep the same probabilities. Since the travel time to
reach region l is assumed deterministic, the transition occurs with certainty.

π(t+) = B(i, d, l)π(t−) (5)

B(i, d, l) =
[
bKij (i, d, l)

]
∈ B|K|×|K| (6)

bKij (i, d, l) =

{
1, for Kij = Ild, RHid, S1id, S2id, S2ih

0, otherwise
, (7)

Where t+ and t− refer to the instant right after and right before time t. B(i, d, l) is the transition
matrix representing the DTMC. K is the state space of the model, and |K| is its cardinality.
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After repositioning: phase (c)

Once the driver reaches the area intended in the repositioning decision, it becomes free to answer
any requests and a CTMC (different from phase(a)) depicts its activities. Figure 2 illustrates the
state space of a single region and the possible transitions. In the figure, regions ‘k’ and ‘h’ can be
a set of regions immediately before or after region ‘o,’ respectively.

Region o
IooRHoo S1oo S2oo

IodRHod S1od S2od

From Regions k
into Region o

Iko

Ikd

RHko

RHkd

S1ko

S1kd

S2ko

S2kd

From Region o
into Regions l IldRHld S1ld S2ld

Figure 2: General state transition structure focusing on a region o and the inflows and
outflows related to this region.

Therefore, we can describe the CTMC with the respective Equation 8, where we estimate the state
probability πK

od(t). Table 1 provides the entries for each state in the CTMC.

π̇K
od(t) = − Exits + Entrances (8)

State Exits Entrances

Ioo πI
od(t)

∑
s∈S

∑
h∈R

λs
oh(t) πRH

oo µRH
oo (t) + πS1

oo (t)µ
S1
oo (t)

Iod πI
od(t)

∑
s∈S

λs
od(t)

∑
h∈R

µ̂I
hd(t)

RHod πRH
od (t)µRH

od (t)
∑
h∈R

πI
oh(t)λ

H
od(t) +

∑
h∈Ro

µ̂RH
hod(t)

S1od πS1
od (t)µ

S1
od (t) + λ̂S2

ohd(t) + λ̂S2
odh(t)

∑
h∈R

πI
oh(t)λ

S
od(t) +

∑
h∈Ro

µ̂S1
hod(t) + µ̂S2

od (t)

S2od πS2
od (t)µ

S2
od (t)

∑
h∈R

λ̂S2
ohd(t) +

∑
h∈Ro

µ̂S2
hod(t)

Table 1: Summary of state transitions in the Markov Chain model.

We have to detail the entries of the coefficients for ‘Exits’ and ‘Entrances,’ in Equation [8]. To
shorten the description in Table 1, we aggregated some particular transitions explained in Equations
[9]–[13]. In particular, Equation [9] illustrates that a driver can use different paths on his way to the
destination. Equations [10] and [11] illustrate that shared ridesplitting drivers might complete a
ride (Equation [10]) before transferring (Equation [11]). Finally, Equations [12] and [13] illustrate
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that new shared ridesplitting rides can have different delivery order, such as a last-in-first-out
(LIFO) order (Equation [12]) or a first-in-first-out (FIFO) order (Equation [13]).

µ̂K
hod(t) = πK

hd(t)·θhod ·µK
hd(t) K ̸= S2 (9)

µ̂S2
od (t) = πS2

od (t)·ϑood(t)·µS2
od (t) (10)

µ̂S2
hod(t) = πS2

hd (t)·(1− ϑood(t))·θhod ·µS2
hd(t) (11)

λ̂S2
ohd(t) = πS1

od (t)·βh
od ·λS

oh(t) (12)

λ̂S2
odh(t) = πS1

od (t)·βd
oh ·λS

oh(t) h ̸= d (13)

Where, θhod ∈ [0, 1] distributes transfer flows over its neighboring regions such that the equality∑
h∈Ro

θohd = 1 holds; ϑood becomes the fraction of shared trips passing through o that will deliver
a passenger before continuing to d; and βh

od (βd
oh) represents the ratio of od (oh) trips that will

pass through region h (d).
Note that there are two forms of transition processes, generally represented by λs

od(t) and µK
od(t)

for the passenger assignment rate and trip completion/transfer rates, respectively. These are
translations of the macroscopic transitions in Beojone & Geroliminis (2022) to the individual level.

Estimating drivers’ expected revenues

Drivers’ earnings come from the fares passengers pay when booking rides, which are composed by
a couple of elements. Firstly, there is a fixed booking fee fs,B

od relative to the reservation of a ride.
Secondly, there is a travel fee relative to the trip distance fs,T

od . The platform keeps a commission
κ for this fare and returns to the drivers the remaining part.
From the MDCTMC, one can approximate the revenue generation by means of a continuous rate.
Therefore, a driver receives a part of the fees proportionally to the number of received assignments
during the evaluation and to the kilometers traveled in busy states. Equation [14] summarizes the
expected revenue after commission κ. However, it requires us to break the gross revenue into its
minor components throughout Equations [15] – [21].

E[Rnet] = (1− κ)E[R] (14)

E[R] = E[RB +RT ] = E[RB ] + E[RT ] (15)

E[RB ] = E

[∑
s

Rs,B

]
=
∑
s

E
[
Rs,B

]
(16)

E[Rs,B ] = E

[∑
od∈R

Rs,B
od

]
=
∑

od∈R2

E
[
Rs,B

od

]
(17)

E[Rs,B
od ] = E

[
fs,B
od ns,B

od

]
= fs,B

od E
[
ns,B
od

]
(18)

E[RT ] = E

[∑
s

Rs,T

]
=
∑
s

E
[
Rs,T

]
(19)

E[Rs,T ] = E

[ ∑
od∈R2

Rs,T
od

]
=
∑

od∈R2

E
[
Rs,T

od

]
(20)

E[Rs,T
od ] = E

[
fs,T
od ds,Tod

]
= fs,T

od E
[
ds,Tod

]
(21)

Where ns,B
od is the number of booked rides for service s from region o to region d; and ds,Tod is the

passenger-distance traveled for a service s from region o to region d.
Finally, Equations [22] and [23] estimate the remaining expected number of booked rides and
passenger-distance travelled based on the instantaneous probabilities from the MDCTMC. In sum-
mary, these estimates are functions of a starting time t0 and an evaluation period τ for a particular
choice γ.
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E[ns,B
od (t0, τ |γ)] =

∫ t0+τ

t0

λs
od(t)

∑
K∈Ks

B

πK
od(t) dt Ks

B =

{
{I,RP}, if s = H,

{I,RP, S1}, if s = S
(22)

E[ds,Tod (t0, τ |γ)] =
∫ t0+τ

t0

vo(t)
∑

K∈Ks
T

nK
p πK

od(t) dt Ks
T =

{
{RH}, if s = H,

{S1, S2}, if s = S
(23)

Where nK
p is the number of assigned passengers to a driver in activity K. For states RH and S1,

nK
p = 1, while for S2 have nS2

p = 2.

4 Computational results

In this prototype application, we represented the central business district of Shenzhen, including
parts of the Luohu and Futian Districts. The considered network consists of 1’858 intersections
connected by 2’013 road segments. The experiment used a simulator based on Beojone & Gerolim-
inis (2021, 2022), using Floy-Warshall algorithm to compute shortest paths and a Speed-MFD to
estimate average traveling speeds. A network-weighted k-mean algorithm separated the area into
three distinct regions and the Speed-MFD data (Figure 3).
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Figure 3: Settings of the experiments. (Left) urban area map and regions with respective
centroids of the k-mean problems. (Right) Regional speed-MFD.

We assume a non-homogeneous Poisson arrival process for all travelers in the area to highlight the
effects of imbalanced demand. Note that around 85% of arriving travelers use private vehicles,
while the remaining use one of the ride-sourcing service options.

Sensitivity analysis

The first analysis of the repositioning strategy focused on the sensitivity to the fraction of drivers
receiving the repositioning guidance. One can correlate such scenarios with the operator selecting a
groups of drivers for a “loyalty program”, and as part of the benefits, these drivers receive improved
guidance in their search for assignments. In the direction of this parallel, we refer to drivers which
receive guidance as ‘guided’ ones, whereas the others are referred as ‘unguided’.
We assume a logit decision process, where the utility of each option is depicted exclusively by
the revenue it generates to a ‘guided’ driver. Finally, we define that ‘unguided’ drivers look for
the region with the highest demand per driver rate (similar to a ‘high demand’ flag in current
ride-sourcing operations).
Additionally, we evaluated the results for fleet sizes of 2000, 2500 and 3000 active drivers in ride-
sourcing services. We ran cases with 0%, 25%, 50%, 75% and 100% of drivers covered in the
‘loyalty program’. As final parameters, we considered booking fares of US$2.20 and US$2.00, and
traveling fares of US$1.00 and US$0.80 for ride-hailing and ridesplitting, respectively.
Since the proposed repositioning framework must persuade ‘guided’ drivers, their outcomes should
be higher than those of ‘unguided’ drivers. Figure 4 shows the average revenues of both groups
of drivers at different guidance rates (fraction of the fleet that receives repositioning guidance
information). Firstly, average revenues increased compared to a scenario where drivers never
relocate in all cases with guidance (the exception occurs at 0% guidance rate). We must point out
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that guided drivers consistently had higher revenues than non-compliant ones. It highlights that
the proposed framework captured the possibility of areas with lower demand being more profitable.
However, it is interesting to observe that as the operator expands the number of ‘guided’ drivers
(more than 75% of the fleet), the combined average revenue slightly decreases.
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Figure 4: Average revenues of ‘guided’ and ‘unguided’ drivers following by a combination
of these in scenarios with different penetration rates of the loyalty program, compared to
the base ‘No-repositioning’ case.

It is interesting to take a closer look at individual revenues and understand their distribution.
Figure 5 shows the histograms of the revenues for ‘unguided’ and ‘guided’ drivers in the base
‘No-repositioning’ scenario and one with 25% guidance ratio for a service fleet of 2000 drivers.
With a left skewed distribution, no repositioning scenario had lower average revenue average. In
the scenario with 25% of ‘guided drivers, the distribution of revenues was unimodal with the
average close to the mode, creating a clear distinction between the groups. The average revenue
of compliant drivers was higher than the revenue of 97% of non-compliant ones.
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Figure 5: Histograms of revenues in two separated instances with 2000 drivers.

Benchmark comparisons

As argued earlier, other repositioning strategies exist to improve service quality but they can fall
short on their reactive nature and/or full compliance assumptions. Here, we position the proposed
strategy in comparison with other benchmark strategies. In addition to the ‘No-repositioning’ base
case and the ‘Proposed’ strategy, we evaluate the strategies named below:

1. ‘Past-revenue’: Provides a portion of ‘guided’ drivers with an average revenue estimation
accounting exclusively for past events in each area;

2. ‘Past-loss’: Dispatches the closest idle driver to the area of a recently lost request (Alonso-
Mora et al., 2017);

3. ‘Coverage’: Performs optimal coverage control, distributing idle drivers according to the
demand distribution in the area (Zhu et al., 2022);

7



It is important to highlight that the ‘Past-revenue’ strategy has a reactive nature but allows drivers
to decide, whereas ‘Past-loss’ strategy is reactive and assumes full compliance with the instructions.
Foremost, the objective of repositioning vehicles is to improve the service quality, especially by
making the service available in previously uncovered areas. Figure 6 compares the number of
unattended service requests (abandonments) for all evaluated strategies. Firstly, when no drivers
receive guidance and base their decisions on ‘high-demand areas’ information (0% guidance) it,
actually, worsened the service increasing abandonments compared to the base case. Reactive
strategies (‘Past revenues’ and ‘Past losses’) performed poorly, with little to no improvement
compared to the base case. The most interesting point goes to comparison between the ‘Proposed’
and the ‘Coverage’ approaches. Although optimized, the ‘Coverage’ approach was outperformed
by the ‘Proposed’ approach with a 50% guidance ratio, decreasing abandonments by 61% for a
fleet of 2000 vehicles. Nevertheless, there are small increase in abandonments if guidance ratio
is higher than 50%, which highlights the limitations the individualized decision-making towards
service quality.
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Figure 6: Summary of passenger abandonment results for all compared strategies.

In a different direction, most attention to ride-sourcing effect over congestion goes to their dead-
heading. In Figure 7, we summarize the deadhead accumulated for each strategy for the same tested
cases with 2000 vehicles and 50% guidance ratio. The only strategy to increase it, both in the
unassigned and pick-up activities, is the ‘Past-revenues’ strategy. In the ‘Proposed’ approach, the
unassigned deadhead is minimized but the ‘Coverage’ approach minimized the ‘Pick-up’ deadhead.
It highlights two distinct points about of these strategies. First, while the ‘Proposed’ approach
maximizes the chances of a drivers being assigned, the driver only needs to be as close as passen-
gers’ waiting time tolerance accepts. Second, ‘Coverage’ approach had minimal ‘Pick-up’ deadhead
because it “mimics” the expected demand distribution.
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Figure 7: Summary of the deadhead associated with each repositioning strategy, separated
into unassigned and pick-up kilometrages. Scenario with 2000 drivers and 50% of guidance
rate in the ‘Proposed’ and ‘Past revenues’ methods.
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5 Conclusions

In this paper we proposed a relocation strategy for ride-sourcing drivers by providing them with
an estimate of their earnings. Therefore, we do not assume drivers unrestricted compliance to the
provided guidance and, thus, they are free to make the decision that they expect will maximize
their earnings. The first step in the proposed approach identifies the locations that are expected to
maximize the chances of a driver getting a match in the forecast horizon. Then, a MDCTMC model
is developed to capture the activities a driver will perform depending on his/her decision, which is
later translated into an estimate of the driver’s earnings. We showed that the proposed approach
is likely to retain drivers confidence by improving their earnings compared to other drivers if the
operator selects only a fraction of active drivers to provide guidance. Besides improving earnings,
we show that the proposed approach manages to decrease the number of unserved requests in the
system compared to several state-of-art benchmarks. It increased vehicle occupancy, and decreased
the deadheading.
The findings provide a path for testing the impacts of different regulatory schemes in such systems.
The provided guidance could further benefit drivers and unserved passengers, if it comes paired with
other mechanisms to foster movements to poorly covered areas. It could include lower commissions
in these areas, or other price changes to make it more attractive to drivers. Other research directions
include developing optimal control to reposition without the decision-making process by drivers,
which would be more realistic in cases with autonomous vehicles but it would also serve as upper
(lower) bound for performance measurements and evaluation.

References

Alonso-Mora, J., Samaranayake, S., Wallar, A., Frazzoli, E., & Rus, D. (2017). On-demand high-
capacity ride-sharing via dynamic trip-vehicle assignment. Proceedings of the National Academy
of Sciences USA, 114 (3), 462–467. doi: 10.1073/pnas.1611675114

Beojone, C. V., & Geroliminis, N. (2021). On the inefficiency of ride-sourcing services towards
urban congestion. Transportation Research Part C: Emerging Technologies, 124 , 102890. doi:
10.1016/j.trc.2020.102890

Beojone, C. V., & Geroliminis, N. (2022). A dynamic multi-region mfd model for ride-sourcing
systems with ridesplitting. arXiv , 2211.14560 . doi: 10.48550/arXiv.2211.14560

Ingolfsson, A. (2005). Modeling the M(t)/M/s(t) queue with an exhaustive discipline. Working
paper . Retrieved from http://www.bus.ualberta.ca/aingolfsson/working_papers.htm

Powell, J. W., Huang, Y., Bastani, F., & Ji, M. (2011). Towards reducing taxicab cruising time
using spatio-temporal profitability maps. In D. Pfoser et al. (Eds.), Advances in spatial and
temporal databases (pp. 242–260). Berlin, Heidelberg: Springer Berlin Heidelberg.

Sadeghi, A., & Smith, S. L. (2019). On re-balancing self-interested agents in ride-sourcing trans-
portation networks. In 2019 ieee 58th conference on decision and control (cdc) (pp. 5119–5125).
doi: 10.1109/CDC40024.2019.9030043

Wang, H., & Yang, H. (2019). Ridesourcing systems: A framework and review. Transportation
Research Part B: Methodological , 129 , 122–155. doi: 10.1016/j.trb.2019.07.009

Zhu, P., Sirmatel, I. I., Trecate, G., & Geroliminis, N. (2022). Distributed coverage control for
vehicle rebalancing in mobility-on-demand systems. TRB Annual Meeting , 22-03340.

9

http://www.bus.ualberta.ca/aingolfsson/working_papers.htm

	Introduction
	Identifying the best regional repositioning decisions
	Providing drivers with repositioning guidance based on revenue forecasting
	Predicting drivers' activities
	Repositioning movements: phase (a)
	Repositioning boundary: phase (b)
	After repositioning: phase (c)

	Estimating drivers' expected revenues

	Computational results
	Sensitivity analysis
	Benchmark comparisons

	Conclusions

