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SHORT SUMMARY 

This paper addresses the meeting-point-based electric demand-responsive-transport routing and 

charging scheduling problem under charging synchronization constraints. The problem consid-

ered exhibits the structure of the location-routing problem, which is more difficult to solve than 

conventional electric vehicle routing problems. We propose to model the problem using a mixed 

integer linear programming approach based on a layered graph structure. A two-stage simulated 

annealing-based algorithm is proposed to solve the problem efficiently. A mixture of randomness 

and greedy partial recharge scheduling strategy is proposed to find feasible charging schedules 

under the synchronization constraints. The algorithm is tested on 20 instances with up to 100 

customers and 49 bus stops. The results show that the proposed algorithm outperforms the best 

solutions found by a commercial mixed-integer linear programming solver (with a 2-hour com-

putational time limit imposed) for 12/20 test instances and with less than 1-minute computational 

time on average. 

 

Keywords: charging synchronization, demand responsive transport, electric vehicle, feeder 

service, meeting point, metaheuristics (topics: electrification and decarbonization of transport, 

operations research application) 

1. INTRODUCTION 

Electric vehicle routing problems consist of deciding vehicle routes and charging schedules to 

serve a set of customers while satisfying constraints regarding vehicle capacity, time windows 

and vehicle energy (Kucukoglu et al., 2021). For passenger transportation, the problem is related 

to the electric dial-a-ride problem (Bongiovanni et al., 2019). Most of the literature assumes that 

vehicles can be recharged anytime with unlimited capacity of charging stations (Schneider et al., 

2014). This assumption is often violated in practice as the number of rapid chargers is very limited 

due to their high installation costs. The electric vehicle routing problem with capacitated charging 

stations (EVRP-CS) is yet more difficult, as it needs to synchronize the charging operations of 

vehicles to save waiting time at charging stations. Recent research efforts have mainly focused 

on developing exact methods based on the mixed linear integer programming (MILP), by assum-

ing that the vehicles recharge to full when arriving at charging stations and considering a linear 

charging speed (Bruglieri et al., 2019). To allow multiple visits of vehicles to the chargers, each 

charger node has several dummy copies. Charging capacity is ensured by deferring the current 
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visit of a charger to at least the full charging time of the previous visit of another vehicle in as-

cending order of visits. The authors propose a path-based MILP formulation and use the cutting 

plane method to solve exactly the test instance with less than 20 customers within 1-hour compu-

tational time. Froger et al. (2021) propose a path-based MILP formulation by considering piece-

wise linear charging functions and partial recharge, and propose a matheuristic method to solve 

the EVRP-CS exactly. Their solution method first generates a pool of initial routes without con-

sidering the capacity constraints of the charging stations, and then in the second step, they try to 

recombine these routes to find a solution satisfying the capacity constraints. Their problem as-

sumes that the vehicles are homogeneous (battery size) and fully recharged before starting the 

service. They were able to solve exactly most of the test instances with 10 customers. Lam et al. 

(2022) propose a branch-and-cut-and-price algorithm to solve the EVRP problem with time win-

dows and capacitated charging station constraints (EVRPTW-CS) by considering both vehicle 

partial recharge and piecewise linear charging functions. The charging scheduling synchroniza-

tion subproblem is handled by applying the constraint programming technique. Their exact 

method can solve the problem with the larger test instances of up to 100 customers. To the best 

of our knowledge, the existing literature mainly focuses on exact methods that can be adopted to 

small-scale instances. There are still no efficient algorithms to address the related EVRP or 

electric dial-a-ride problem (e-DARP) at large scale. 

In this paper, we aim to address the above issue and focus on a variant of EVRPTW-CS, an 

electric DRT (feeder) system which provides passenger transport service to connect to transit 

stations. This type of service is mainly applied in rural areas where public transport service is 

poor (Ma et al., 2021). To enhance efficiency of the electric DRT system, the meeting point con-

cept (customers may board/alight at pre-defined stops near to their origins/destinations) is con-

sidered (Czioska et al., 2019). The problem needs to decide jointly where to pick up customers 

and how to route vehicles under various constraints. The problem is more complicated due to 

interactions between customer-to-bus-stop assignment and the subsequent vehicle routing and 

charging synchronization.  

2. METHODOLOGY 

2.1. Problem description  

We consider a DRT feeder service in a rural area provided by an operator using a heterogeneous 

(in terms of capacity, battery size, and energy consumption rate) fleet of electric buses (also called 

vehicles hereafter) to complement the public transport system. To enhance system efficiency and 

reduce operational costs, the DRT system adopts the concept of meeting points i.e. customers 

are offered a limited number of pick-up/drop-off meeting points, rather than a door-to-door ser-

vice (Czioska et al., 2019; Ma et al., 2021) and the service is punctuated (e.g. the vehicle arrives 

at a transit station every 10-20 minutes to drop off the transit passengers). The system is operated 

as follows. For a given planning period, customers submit their ride requests in advance indicating 

their origin, the transit station to be dropped off, and their desired arrival time (corresponding to 

the pre-defined arrival timetable of the DRT buses). The operator collects these ride requests and 

communicates whether customers’ ride requests are accepted, their pickup time, and suggested 

bus stop (meeting point). The operator’s objective is to optimize vehicle routes so as to arrive at 

transit stations within a fixed buffer time (e.g. ≤ 10 minutes before the announced arrival time-

table at transit stations). We assume that customers are willing to walk from their origins to the 

suggested meeting points, up to some maximum acceptable walking distance. The state of charge 

of the vehicles cannot fall below the reserve battery level throughout the route. Vehicles can be 

recharged only at operator-owned charging stations; each station has a limited number of 
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chargers. Charging operations cannot overlap at any charger, i.e., a vehicle is not allowed to wait 

at a charger/charging station.  

The meeting-point-based electric feeder service problem with charging synchronization con-

straints (MP-EFCS) problem is formulated as a mixed-integer-linear programming (MILP) prob-

lem as an extension of the electric dial-a-ride problem (e-DARP)(Bongiovanni et al., 2019), but 

adopting the concept of meeting points, allowing customers to be rejected (with a high penalty 

costs) under vehicle charging synchronization constraints. Given a set of customer requests, the 

objective is to optimize vehicle routes to meet these requests while considering the trade-off be-

tween system costs and customer inconvenience. The objective function minimizes the weighted 

sum of total vehicle travel time and total vehicle charging time, customer’s total walking time, 

total vehicle waiting time at transit stations before the acceptable fixed buffer time, and the total 

penalty of unserved requests. The computational time for solving the MP-EFCS exactly needs to 

enumerate all possible customer-bus-stop assignments and then solve each corresponding e-

DARP with charging synchronization constraints problem (e-DARP-CS) to find the global min-

imum. This is possible only for very small problem size. To solve it efficiently, we propose a 

layered (directed) graph model (Fang and Ma, 2022) according to the sorted arrival timetable at 

transit stations and prune infeasible arcs or layers to reduce the problem size (see an illustrative 

example in Figure 1). 

 

Figure 1. An illustrative example of the layered directed graph (arcs are omitted) for modeling 

the meeting-points-based electric feeder service with the charging synchronization constraints.  

2.2. Solution algorithm 

We propose an efficient two-stage solution scheme by finding a good customer-bus-stop assign-

ment in the first stage. In the second stage, a simulated annealing (SA) based metaheuristic 

(Braekers et al., 2014) with a post-optimization procedure is proposed to solve the routing prob-

lem with charging synchronization constraints. The new challenge is how to optimize vehicles’ 

charging schedules with synchronization constraints. The customer-bus-stop assignment prob-

lem on the first stage is formulated as an MILP formulated, as a variant of the capacitated facility 

location problem, to minimize the weighted sum of the total customer walking time and bus travel 

time between the activated (with positive assigned customers) bus stops. Given the solution ob-

tained from the customer-bus-stop assignment problem, we construct an e-DARP-CS instance by 

trimming off unused bus stop nodes and arcs connected to them, based on the layered graph 

model. An initial feasible solution is generated as the best feasible solution found for n random 

solutions using a greedy insertion approach. The SA-based algorithm applies a randomly selected 

local search operator on the current solution and obtains a temporary solution. If the cost of the 
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temporary solution is smaller than that of the current solution plus the threshold value T (temper-

ature), and there are no charging operation conflicts, a vehicle exchange operator is applied on 

the temporary solution to further reduce the charging time of the vehicles of the temporary solu-

tion. If the resulting vehicle exchange and rescheduled charging operations (if any) has an im-

proved cost without charging conflicts for all vehicles, then update the current solution. We track 

the number of times that the current best solution has stagnated. If this exceeds a pre-defined 

limit, the algorithm returns the current best solution. Otherwise, randomly selected local search 

operators are applied until a maximum number of iterations is achieved. This early stop criterion 

helps to reduce the computation time. As we allow customer requests to be rejected, unserved 

customers are managed in a pool, which is regarded as a virtual route, allowing customers to be 

removed from the vehicles. Note that charging schedule updating is applied at the end of each 

local search operation. Given the layered graph structure, we can efficiently screen-out infeasible 

insertion positions by checking whether the layer of a customer to be inserted is (in)compatible 

with the layer of the current inserted position of the route. This conflict check can be done in O(1) 

and reduces the computational time significantly. We propose seven local search operators, in-

cluding relocate ensemble, two-opt*, two-opt, exchange-segment, exchange-customer, four-opt, 

and create-route.  

The e-DARP-CS instance is optimized based on the first stage customer-bus-stop assign-

ment. It might be possible to accommodate unserved customers by changing their assigned bus 

stops, then re-inserting them into the current bus routes. In doing so, bus routes and charging 

schedules need to be updated accordingly. In the case that there are unserved customers, we pro-

pose an efficient post-optimization procedure to re-optimize the best solution obtained from the 

SA algorithm. Our numerical results show that this post-optimization procedure can improve the 

final solution and reduce the number of unserved customers with little additional computational 

effort. 

3. RESULTS AND DISCUSSION 

To test the algorithm, we consider two 4-hour scenarios, corresponding to peak (P) and off-peak 

(OP) demand profiles. Scenario P simulates a peak-hour situation where customers’ desired arri-

val times at transit stations are concentrated around a peak hour, while OP reflects the opposite 

situation when customers' desired arrival times are uniformly spread over a longer operating pe-

riod. In each scenario, we generate 10 instances spanning the range of 10-100 customers. These 

test instances have a single vehicle depot, two train stations, and four chargers. Meeting points 

(potential bus stops) are generated as a grid with a separation distance of 1 km and customers 

maximum walking distance is 1.5 km. Punctuated services are provided for the two train stations 

with three services per hour throughout the analysis period. In total, there are 26 layers with 25 

to 49 activated bus stops per layer (bus stops within the maximum walking distance of the cus-

tomers). A customer may have up to 7 potential bus stops within walking distance. Consequently, 

the possible customer-bus-stop assignment combinations are very large, providing non-trivial 

tests of algorithm performance. We consider two types of vehicles with different passenger ca-

pacity, battery capacity, and energy consumption rate.  

The performance of the algorithm is compared with the solution obtained by a state-of-the-

art MILP solver (Gurobi, version 9.1.2) with a 2-hour computational time limit. Our algorithm 

and the MILP model are both implemented using the Julia programming language. We run the 

experiments on a laptop with Intel(R) Core(TM) i7-11800H processor and 64 GB memory using 

a single thread.  

MILP solutions obtained by Gurobi are reported in Table 1. The instance name cxx means 

that there are xx customers in that instance. To ensure scenarios where vehicles need to recharge, 

initial battery levels of vehicles are set as low as 20%, 30%,…, and 80% of the battery capacity. 
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For each instance, the MILP results give the best feasible solution found within 2 hours, along 

with the lower bound. The third column shows the number of unserved customers. The solver can 

obtain (near) optimal solutions for small instance of 10 customers. The number of unserved cus-

tomers increases dramatically for instances with more than 50 customers. To account for the ran-

dom elements within the two-stage SA-based algorithm, results are based on the average over 5 

runs with random seeds. For each instance, we report the average objective function value and its 

gap to the best-known solution (BKS) found by the solver. The last two columns report the num-

ber of unserved customers and the average computational time (per run). The results show that 

the proposed algorithm outperforms the BKS for 12/20 test instances with less than 1-minute 

computational time on average. 

 

Table 1: Computational results obtained using Gurobi solver and the two-stage 

SA-based algorithm on the test instances. 
 

  MILP Two-stage SA based algorithm 

In-

stances 

Best 

known 

solution 

Gap to 

the 

lower 

bound 

Num. of 

un-

served 

custom-

ers 

Avg. 

obj. 

value 

Gap to 

BKS 

Num. 

of un-

served 

cus-

tom-

ers 

cpu 

time 

(sec.) 

Scenario Off-Peak (OP)           

c10 107.91 1.10% 0 107.91 0.00% 0 4 

c20 233.02 14.40% 0 234.96 0.83% 0 11 

c30 327.46 16.30% 0 340.08 3.85% 0 36 

c40 450.17 31.30% 1 424.03 -5.81% 0 39 

c50 696.13 44.70% 2 611.32 -12.18% 0.4 36 

c60 816.88 43.04% 4 659.31 -19.29% 0 120 

c70 755.46 26.35% 0 782.41 3.57% 0 84 

c80 1107.52 43.35% 7 906.83 -18.12% 0 123 

c90 1525.81 58.33% 15 969.28 -36.47% 0 155 

c100 1689.13 55.57% 20 1074.65 -36.38% 0 154 

Scenario Peak (P)             

c10 112.31 18.00% 0 112.56 0.22% 0 5 

c20 284.79 41.49% 1 311.36 9.33% 0 9 

c30 340.85 33.16% 1 365.03 7.09% 1 22 

c40 455.81 44.10% 2 472.6 3.68% 1 27 

c50 705.36 55.10% 5 698.18 -1.02% 2.2 36 

c60 996.41 60.11% 11 692.2 -30.53% 0 37 

c70 1023.21 55.22% 15 769.55 -24.79% 0 60 

c80 1514.25 66.05% 24 892.82 -41.04% 0 42 

c90 1600.89 68.04% 24 1009.5 -36.94% 0 3 

c100 1369.96 53.34% 13 1101.09 -19.63% 0 15 
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4. CONCLUSIONS 

Electric vehicle routing with charging synchronization (under capacitated charging stations) are 

more difficult to solve and efficient solution algorithms are still underdeveloped for solving me-

dium/large problem instances. In this study, we consider the problem of an electric dial-a-ride 

feeder system with charging synchronization based on the concept of meeting points and propose 

a layered graph model and a mixture of randomization and greedy strategy within a two-stage 

SA-based algorithm framework to solve this problem efficiently. We test the algorithm on 20 test 

instances with up to 100 customers and 49 bus stops. Results show that the proposed algorithm 

can find solutions efficiently with good solution quality. Several research directions are ongoing, 

including algorithmic parameter calibration, sensitivity analysis, charging infrastructure and fleet 

size planning, and integrated DRT system operational policy optimization. 
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