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Short summary

Bus Rapid Transit (BRT) systems can be of great value to attract passengers towards public
transport, as they offer an attractive service at relatively low investment costs. Often, BRT lines
are created by giving the bus a dedicated right of way along segments of an existing bus line. This
paper focuses on quantifying the trade-off between the number of attracted passengers and the
available investment budget when upgrading a line. Motivated by the construction of a new BRT
line around Copenhagen, we consider multiple municipalities that invest in the line. We additionally
allow restrictions on the number of connected components to be upgraded to enforce connectedness.
We suggest two passenger responses to determine the number of attracted passengers and propose
an ε-constraint based algorithm to enumerate all non-dominated points. Moreover, we perform an
extensive experimental evaluation on artificial instances and a case study for the BRT line around
Copenhagen.
Keywords: Bus Rapid Transit, Network Design, Operations Research Applications, Public Trans-
port

1 Introduction

Increasing the modal share of public transport is seen as one of the paths to reducing greenhouse
gas emissions, even when considering the electrification of private cars (Messerli et al., 2019).
Bus Rapid Transit (BRT) systems can contribute to this goal, as BRT lines provide a fast and
reliable service to passengers due to having a dedicated right of way for buses along a large share
of their route. However, while BRT investment costs are lower than for rail-based alternatives,
these investments are still substantial for local authorities both in terms of cost and usage of city
space that cannot be used for other purposes. Hence, careful planning is needed to decide which
segments of the existing line should be upgraded to a BRT standard.
In this paper, we focus on quantifying the trade-off between the number of attracted passengers
and the investment budget by determining the optimal sets of segment upgrades. Motivated by a
new BRT line being built in the Greater Copenhagen area, we consider a problem setting in which
multiple municipalities are responsible for different segments of the line and each municipality has a
budget limit. To prevent frequent switching between upgraded and non-upgraded segments due to
fragmented investments, which could reduce reliability and thus deter passengers, we additionally
allow restricting the number of upgraded connected components on the line. We refer to this
problem as the BRT investment problem.
The BRT investment problem relates to the well-studied network design problem for public trans-
port (Laporte et al., 2000; Laporte & Mesa, 2019). While the network design problem generally
focuses on constructing a network from scratch, numerous papers also look at the upgrading of
existing public transport networks. Particularly relevant for us are those papers looking at the
allocation of dedicated bus lines within existing transport networks, many of which focus on the
trade-off between the benefits for public transport passengers and the congestion on the road net-
work (Khoo et al., 2014; Bayrak & Guler, 2018; Tsitsokas et al., 2021). Another addition to the
standard network design problem that is relevant for our application in the Greater Copenhagen
region is the inclusion of multiple investing parties, which was studied by Wang & Zhang (2017)
within a game-theoretical setting. Moreover, the underlying mathematical structure of the BRT
investment problem is similar to the more general network improvement problem, which consists
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of choosing edges in a network to be upgraded while minimizing costs or satisfying a budget con-
straint (Krumke et al., 1998; Zhang et al., 2004; Murawski & Church, 2009). Compared to existing
literature, our work distinguishes itself by studying the combination of a trade-off between the
number of attracted passengers and the investment budget, the inclusion of multiple investing
parties, and the inclusion of constraints ensuring connectedness of the upgraded segments.
This paper builds on the work of our earlier conference paper (Hoogervorst et al., 2022), in which
we looked at the single-objective problem of upgrading bus line segments under a budget constraint
and without a constraint on the number of upgraded components. In this paper, we instead propose
a new bi-objective mixed-integer programming model to solve the BRT investment problem that
allows us to construct the Pareto curve between the total investment budget and the number
of attracted passengers. We do so under two possible passenger responses, one corresponding
to a linear relation and the other to a threshold relation between segment upgrades and the
attracted share of passengers. We show how the set of all non-dominated points can be found
under these passenger responses and test our proposed algorithm in a numerical study for both
artificial instances and a case study for the BRT line in Greater Copenhagen.

2 Methodology

In this section, we first formally define the problem and afterwards describe the used solution
methods.

Problem Definition

We consider an existing bus line given by a linear graph (V,E), where V = {1, . . . , n} for n ∈ N≥1
denotes the set of stations and E =

{
ei = {i, i + 1} : i ∈ {1, . . . , n − 1}

}
the set of segments

between the stations. For each edge e ∈ E, we know the cost ce ∈ R>0 for upgrading the edge as
well as the improvement, i.e., improvement in travel time, ue ∈ R>0 that is realized when the edge
is upgraded. Moreover, let D ⊆ {(i, j) : i, j ∈ V, i < j} be the set of origin-destination (OD) pairs
for the line, where OD-pair d = (i, j) ∈ D has the unique path Wd = {ek : k ∈ {i, i+ 1, . . . , j− 1}}
along the line. For each OD-pair d ∈ D, we additionally know the number of potential passengers
ad that are attracted when all edges in the path Wd are upgraded.
The set of municipalities that are investing in the BRT line is given by M . For each municipality,
we know the set of consecutive edges Em ⊆ E that lie within the municipality. We will assume
that these sets of edges of the different municipalities are pairwise disjoint, i.e., Wk ∩Wl = ∅ for
k, l ∈ M,k 6= l. Moreover, we know the budget share bm that is allocated to each municipality,
i.e., each municipality gets budget bmB when considering some total budget B. Lastly, to prevent
buses from switching too often between upgraded and non-upgraded ones, we enforce a maximum
number of BRT components of Z.
While the number of potential passengers attracted is given for each OD-pair d ∈ D when all edges
in Wd are upgraded, it is beforehand unclear how passengers react to partial upgrading of the
edges in Wd. We consider two different passenger responses pd(F ) to a set of upgrades F ⊆ E:

• The Linear response to upgrades

pd(F ) :=

∑
e∈F∩Wd

ue∑
e′∈Wd

ue′
· ad,

in which the number of passengers scales linearly with the amount of improvement realized.

• The MinImprov response to upgrades

pd(F ) :=

{
ad if Ld ≤

∑
e∈F∩Wd

ue,

0 otherwise,

in which all the potential passengers are only attracted when a minimum improvement of
Ld is achieved.

Note that the MinImprov response resembles a shortest path based route and mode choice, where
passengers only switch to the BRT line in case the upgrade is large enough to make it their option
with the shortest travel time.
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The BRT investment problem then becomes to find all the non-dominated solutions (F,B), with
F the set of upgraded edges and B the total investment budget, that solve:

max
∑
d∈D

pd(F ) (1)

min B (2)

s.t.
∑

e∈Em∩F
ce ≤ bmB m ∈M, (3)

G[F ] has at most Z connected components, (4)
F ⊆ E, (5)
B ∈ R. (6)

The first objective (1) maximizes the number of attracted passengers, while the second objective (2)
minimizes the investment budget. Constraints (3) enforce the budget limit for each municipality.
Moreover, constraints (4) enforce the maximum number of BRT components. Here, G[F ] is the
graph induced by the set of edges F , i.e., the graph obtained after deleting all edges from G that
are not contained in F .

Solution Methodology

Formulation (1) – (6) can be transformed into a bi-objective mixed-integer linear programming
(MILP) model through introducing variables for all e ∈ E that depict if a segment is upgraded
and, in the case of the MinImprov response, variables yd for all d ∈ D that depict if the minimum
improvement is realized for an OD-pair. For example, this leads to the following formulation for
the MinImprov objective:

max
∑
d∈D

adyd (7)

min B (8)

s.t. Ldyd ≤
∑
e∈Wd

uexe d ∈ D, (9)

∑
e∈Em

cexe ≤ bmB m ∈M, (10)

xei − xei+1 ≤ zi, i ∈ {1, . . . , n− 2}, (11)
xei+1 − xei ≤ zi, i ∈ {1, . . . , n− 2}, (12)

xe1 +

n−2∑
i=1

zi + xen−1
≤ 2Z, (13)

xe ∈ {0, 1} e ∈ E, (14)
zi ∈ {0, 1} i ∈ {1, . . . , n− 2}, (15)
yd ∈ {0, 1} d ∈ D, (16)
B ∈ R. (17)

The objectives (7) and (8) maximize the number of attracted passengers and minimize the invest-
ment budget, respectively. Constraints (9) determine if the minimum improvement for an OD-pair
is realized. The budget limit is enforced for each municipality by constraints (10). Moreover,
constraints (11) – (13) enforce the maximum number of BRT components through counting the
number of switches on the line between upgraded and non-upgraded segments. A bi-objective
MILP model can be obtained for the Linear passenger response in a similar way.
We use the ε-constraint method to find the set of non-dominated solutions, i.e., solutions on the
Pareto curve, for the proposed bi-objective programming problems. The used algorithm is given in
Algorithm 1, which is an adaptation of the algorithm proposed by Bérubé et al. (2009). The idea
of the algorithm is to iteratively compute all non-dominated points by solving the single-objective
version of the BRT investment problem for a fixed total budget B and to decrease B in each step
by a value that is small enough not to cut-off any non-dominated solution. In particular, we can
prove that this algorithm generates the set of all non-dominated points on the Pareto curve.
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Algorithm 1 Computing the non-dominated points for the BRT investment problem
1: Input: instance I of the BRT investment problem.
2: Output: set Γ of all non-dominated points.
3: As start values set
4: Γ← ∅,
5: B ← max

m∈M
{ 1
bm
· ∑
e∈Em

ce},

6: v∗ ← max
m∈M

{ 1
bm
· ∑
e∈Em

ce},

7: p∗ ←∑
d∈D ad.

8: while B ≥ 0 do
9: Solve instance I with budget B. Let F be an optimal solution, p̄ be the optimal

objective value.
10: Compute the minimum budget v̄ such that F remains feasible.
11: Compute step width δ.
12: if p̄ < p∗ then
13: Set Γ← Γ ∪ {(p∗, v∗)}.
14: Set p∗ ← p̄.
15: end if
16: Set v∗ ← v̄.
17: Set B ← v̄ − δ.
18: end while
19: Set Γ← Γ ∪ {(p∗, v∗)}.
20: return Γ

3 Results and discussion

We perform computational experiments for both a set of artificial instances, based on those in-
troduced in Hoogervorst et al. (2022), and on instances from the proposed BRT line in Greater
Copenhagen that motivated our study. The artificial instances differ with respect to the passenger
demand over the OD-pairs and the upgrade costs of the segments. The instances for the Greater
Copenhagen BRT line are instead based on five proposed line alternatives for the BRT, depicted
in Figure 1, and consider different ways of distributing the total budget over the municipalities.

Results Artificial Instances

The obtained Pareto plots for the artificial instances are given in Figure 2 for the setting of
a single municipality that can invest in all edges. The different columns in the figure indicate
the different passenger demand distributions, where each OD-pair has equal demand (EVEN ),
passengers mostly travel to the closest large station (CENTER), and passengers mainly travel
between the two end-stations (END), respectively. The rows instead indicate the different cost
patterns, where all segments have equal upgrade cost (UNIT ), edges towards the middle are most
expensive to upgrade (MIDDLE ), and edges towards the ends are most expensive to upgrade
(ENDS ), respectively.
The Pareto plots in Figure 2 show that there is a noticeably different trade-off between attracted
passengers and investment budget for the two passenger responses. For passenger response Linear,
we obtain a mostly concave shape for all demand and cost patterns, where the first investments
generate the largest number of new passengers. Instead, the shape of the Pareto curves is more
variable over the demand and cost patterns for the the MinImprov response. In particular, we can
see a clear jump in the Pareto plots for the MinImprov response for the END demand pattern,
which can be explained by the minimum improvement threshold that needs to be reached for
attracting the large number of passengers traveling over the whole line in this demand pattern.
The Pareto plots also allow us to obtain insight into the effect of restricting the number of connected
components. Restricting the BRT line to consist of a single component leads to a clear reduction
in the number of passengers attracted, especially for the CENTER and END demand patterns.
The reduction is significantly smaller when allowing at least two components, where especially the
Pareto plots for allowing three components lie close to the ones where no restriction on the number
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Figure 1: Route alternatives for a new BRT line in Greater Copenhagen. Adapted from
Vejdirektoratet et al. (2022).

of components is enforced.

Results BRT Line Greater Copenhagen

Pareto plots for the instances based on the Greater Copenhagen BRT line are given in Figure 3.
To evaluate the impact of multiple investing parties, these Pareto plots have been split into the
case with multiple investing municipalities (MIM ) and a case with a single investing party (SOC )
that can spend the whole investment budget B. For the MIM case, the total budget is split both
according to the number of passengers in a municipality (pass) and the costs of the edges in a
municipality (cost). Note that no restriction is enforced on the number of BRT components.
Figure 3 shows that there is not a universal ordering of the line alternatives but that the best
alternative depends on the investment level. For the SOC case, line alternatives 4 and 5, e.g., lead
to the highest number of passengers for higher investment levels under both passenger responses.
On the other hand, line alternatives 1 and 2 perform well for low investment levels, in particular
for the MinImprov response. When comparing the SOC and MIM cases, it can additionally be
seen that the introduction of a budget per municipality leads to a clear reduction in the number
of attracted passengers. This reduction seems to be strongest when passengers behave according
to the MinImprov response, for which we again see a more convex shape of the Pareto curve
when moving to the MIM case. Lastly, a comparison between the two budget assignments shows
that the cost budget distribution often seems to lead to the highest number of passengers for high
investment levels, while pass often performs well for lower investment level.

4 Conclusions

In this paper, we studied the BRT investment problem, which is focused on finding the trade-off
between attracted passengers and investment budget when upgrading an existing bus line to a
BRT line. We formulated the problem formally and suggested an ε-constraint based algorithm
to enumerate the full set of non-dominated points. The algorithm was tested on both artificial
instances and instances coming from a BRT line case study in Greater Copenhagen. Our artificial
results give insight into the trade-off between the number of passengers and investment budget for
different instance settings and show that the trade-off clearly depends on the assumed passenger
response to upgrades. Moreover, they show that especially the limitation to a single BRT com-
ponent leads to fewer passengers, while the impact is significantly lower if more components are
allowed. Our results for the Greater Copenhagen case study show how the best line alternative can
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Figure 2: Non-dominated points for the Linear (red) and MinImprov (blue) passenger
response. Solid lines represent the case Z = ∞, dashed lines Z = 3, dashed-dotted lines
Z = 2 and dotted lines Z = 1. Attracted passengers and total investment are given as a
percentage of the total number of potential passengers and costs for upgrading all segments,
respectively.
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(a) SOC: Linear (b) SOC: MinImprov

(c) MIM: Linear (d) MIM: MinImprov

Figure 3: Comparing investment costs and attracted passengers for the different route
alternatives for Z =∞.
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differ per investment level and show the impact that having multiple investing municipalities has
on the number of attracted passengers. The latter is shown to depend on the passenger response,
where the impact is strongest in the case of the threshold-based passenger response MinImprov.
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