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Short summary

This paper investigates the impact of walking and e-hailing on the scale economies of on-demand
mobility services. A microeconomic model is developed to explicitly characterize the physical
interactions between passengers and vehicles in the matching, pickup, and walking processes under
different market conditions and matching mechanisms. We show that passenger competition plays
a critical role in scale economies. When unmatched passengers do not compete for idle vehicles,
both street-hailing and e-hailing exhibit increasing returns to scale, although such property in e-
hailing is less significant. In contrast, when there exists passenger competition, e-hailing service
shows decreasing returns to scale. Street-hailing, however, is free of this detrimental effect thanks
to its limited matching radius. While walking does not change the scale economies, it does benefit
the system by reducing the total vehicle supply required to serve the same level of demand and
improving the overall vehicle utilization rate.
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1 Introduction

The emergence of ride-hailing companies, such as Uber and Didi, has revolutionized the industry
of on-demand mobility services, which has long been dominated by taxis. With advanced mobile
communication technologies, passengers and vehicles can now be connected online. Such an e-
hailing matching mechanism is believed to be far more efficient than the traditional street-hailing
that relies on visual contact on streets (Cramer & Krueger, 2016).
However, evidence from Shenzhen (China) suggests that, in a highly dense market, street-hailing
can perform comparably well or even better than e-hailing (Nie, 2017). The unlimited connectivity
in e-hailing has also shown negative impacts during demand peaks (Castillo et al., 2017). These
observations motivate Zhang et al. (2019) to model the physical matching process in ride-hailing
and analyze its scale effect. It concludes that street-hailing has better scale economies than e-
hailing because i) its matching efficiency does not suffer from passenger competition as e-hailing,
and ii) the nature of linear search is more prone to scale effect compared to spatial search in e-
hailing. However, the analysis in Zhang et al. (2019) does not distinguish the matching and pickup
processes and does not consider the network topology. Another missing factor is walking. In street-
hailing, passengers often walk towards major streets to find taxis. On the other hand, e-hailing
mostly serves door-to-door trips. Accordingly, sometimes drivers have to make long detours and
enter local streets to pick up and drop off passengers. In fact, leaving the door-to-door scheme has
shown great potential to increase the efficiency of shared on-demand systems by several previous
studies (e.g. Fielbaum et al. (2021); Gurumurthy & Kockelman (2022)). These findings suggest
walking might also play a role in the scale economies of ride-hailing.
This study thus sets out to analyze the scale economies in street-hailing and e-hailing at the system
level and investigate the impact of walking. To this end, we model the ride-hailing market on a
grid network with detailed specifications of each component in passenger and vehicle time. The
scale economies are then evaluated according to how the system cost under optimal fleet size varies
with the demand rate.
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2 Methodology

Settings

Consider a grid network with two types of streets shown in Fig. 1. The major streets form the
skeleton of the network. Between every two major streets, there are K local streets with equal
spacing s. Accordingly, three types of intersections are identified: (i) Type-1: between major
streets; (ii) Type-2: between local streets; and (iii) Type-3: between local and major streets.

𝑂! = (𝑥", 𝑦")

𝐷! = (𝑥#, 𝑦#)

𝑂)! = (𝑥", 𝑦" + 𝑠)

walking

Type-1

Type-2

Type-3

𝑠

(𝐾 + 1)𝑠

walking𝐷,! = (𝑥#, 𝑦# − 𝑠)

Figure 1: Illustration of a grid network.

Assume the travel speed on major streets is v and it takes δ = s/v to traverse a block. Two
factors αl, αa > 1 are introduced to denote the vehicle speed on local streets and walking speed,
respectively. In other words, it takes αlδ for a vehicle to pass a block on local streets and αaδ for
a passenger to walk through a block.
Assume passenger demand and vehicle supply are both uniformly distributed in space and the
market has reached a steady state. Then, the market conditions can be described by the idle
vehicle density V , the unmatched passenger density W , and the demand rate q (i.e., the passenger
arrival rate per unit area). As per the steady state condition, q also equals the matching and
pickup rates.

Scenarios

In this study, we consider four scenarios: (i) street-hailing without walking (DS), (ii) street-
hailing with walking (WS), (iii) e-hailing without walking (DE), and (iv) e-hailing with walking
(DS). In all scenarios, trips are generated at Type-2 intersections (i.e., passengers travel between
local blocks). When walking is considered, passengers are picked up and dropped off on major
streets and thus pickups and dropoffs happen at Type-3 intersections. For simplicity, we assume
passengers would randomly walk to one of the closest major streets, not necessarily the closest to
their destinations.
On the supply side, we assume vehicles randomly cruise in the network. In DS, vehicles cruise on
local streets to maximize the probability to find a passenger, while in other cases, they cruise on
major streets.

Matching model

Here we present a general matching model and use k ∈ {DS,WS,DE,WE} to denote the scenario.
For both street-hailing and e-hailing, we first define the matching interval δk that denotes how
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frequently matching is performed. We then define Rk and Ak as the matching radius and area,
respectively, both in units of road links (arc). Specifically, street-hailing passengers can only see
vehicles moving in four directions, and thus Ak = 4Rk, k ∈ {DS,WS}. For e-hail, the matching
area can be derived as Ak = 2(R2

k +Rk), k ∈ {DE,WE}.
To capture the possible competition among waiting passengers, we further introduce the notion
of dominant area Yang et al. (2020), denoted by Ã, to represent the area within which any idle
vehicle is for sure matched to the passenger. In this study, we specify the dominant area as follows:

Ãk =
Ak

γk
, γk = max(AkW, 1), (1)

which implies the matching area is evenly distributed to unmatched passengers within Ak.
With the assumptions introduced above, we can easily show the number of “matchable” vehicles
at each matching instance follows a spatial Poisson process. Then, the expected matching time is
derived as

wk
m =

(
γk

AkθkV
+

1

2

)
δk. (2)

where the first term in the parentheses gives the expected number of matching intervals and the
second accounts for the average elapsed time before the first matching instance. The density
correction factor θk is introduced to reflect the accumulation of vehicles on a certain type of street.
It only affects street-hailing whereas in e-hailing θk ≡ 1.
The pickup time in street-hailing is simple thanks to the linear matching mechanism. In contrast,
that in e-hailing is rather complicated because matching is performed in space and the potential
passenger competition affects the effective matching radius R. With some algebra, we derived the
expected pickup distance (in units of arcs) as follows:

Dp =

R−1∑
i=1

(
1− i2 + i

R2 +R

)V (R2+R)

. (3)

To make the model tractable, we introduce the following approximation and replace R with Rk/
√
γk

to capture the impact of passenger competition:

dkp =
c1
V

−
c2
√
γk

V Rk
. (4)

As shown in Fig. (2), where the approximation parameters are set to be c1 = c2 = 1/6, the
approximation error diminishes rapidly with the idle vehicle density.
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Figure 2: Comparison of exact and approximated pickup distance.

Finally, the expected pickup time is derived as follows

wk
p = αk

p

(
dkp + dka +

1

2

)
δ, (5)
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where

αk
p =

{
αl, k = DS

1, k ∈ {WS,DE,WE}
, (6)

dkp =

{
Rk − 1, k ∈ {DS,WS}
c1
V − c2

√
γk

V Rk
, k ∈ {DE,WE}

, (7)

dka =

{
0, k ∈ {DS,WS,WE}
(αl − 1)Da, k = DE

, (8)

where Da is the average walking distance derived as Da = (K+1)(K+2)
6K .

Finally, the total passenger waiting time is written as

wk = wk
a + wk

m + wk
p , (9)

where the walking time is wa = αaDaδ in scenarios WS and WE, otherwise zero.
Another adjustment to make in the scenarios of walking is the in-vehicle time. Let τ̄ be the average
door-to-door trip duration. Then, the in-vehicle time is given by

τk =

{
τ̄ , k ∈ {DS,DE}
τ̄ − 2αlDaδ, k ∈ {WS,WE}

. (10)

Analysis of scale economies

Consider demand rate q as the only system input. Then, the scale economies can be expressed
by how the system cost varies with q under the optimal fleet size N∗, which is solved from the
following optimization problem:

min
N

c(N, q), (11a)

s.t. N = V + q(wp + τ), (11b)
W = qwm, (11c)
wp = fwp

(V,W ), (11d)
wm = fwm

(V,W ), (11e)

The objective of (11) is the sum of vehicle operating cost and passenger travel cost:

c(N, q) = c0N + q(βmwm + βpwp + βawa + βττ), (12)

where c0 is the operation cost of each vehicle and βj , j ∈ {m, p, a, τ} is the value of time specified
for different legs of a trip.
To get N∗, we need to solve the following two implicit functions

W = qfwm
(V,W ) ⇒ W = fW (V, q), (13)

N = V + q(fwp
(V, fW (V, q)) + τ) ⇒ V = fV (N, q). (14)

Accordingly, N∗ can be derived from the first-order condition, which reads

0 =
∂c

∂N
= c0 + q

[
βm (∂V fwm

+ ∂W fwm
∂V fW ) + βp

(
∂V fwp

+ ∂W fwp
∂V fW

)]
∂NfV . (15)

Let c∗(q) denote the system cost with the optimal fleet, then a market exhibits increasing (con-
stant/decreasing) returns to scale if its marginal cost decreases (does not change/increases) with
input.

3 Results and discussion

Scale economies in different scenarios

Note that the walking distance da is exogenously determined by the network property (K) rather
than the demand-supply relationship. Neither does it affect other endogenous variables in the
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market (see Eqs. (11b)-(11e)). Hence, walking does not fundamentally change the property of re-
turns to scale. On the other hand, the passenger competition does make a difference, particularly
for e-hailing. Hence, in what follows, we investigate the scale economies for street-hailing with-
out passenger competition, e-hailing without passenger competition, and e-hailing with passenger
competition. The case of street-hailing with passenger competition is neglected because it rarely
happens in practice, which will be further discussed in the next section.

Street-hailing without passenger competition
In this case, the matching time is independent of W while the pickup time is independent of V .
Hence, we can easily derived the optimal fleet size is solved as

N∗ =

√
βmδkq

c0Akθk
+

[
αk
p

(
Rk − 1

2

)
δ + τk

]
q, (16)

which yields the system cost

c∗ = 2c0

√(
βmδk
c0Akθk

)
q +

[
βmδk
2

+ (c0 + βp)α
k
p

(
Rk − 1

2

)
δ + βaw

k
a + (c0 + βτ )τk

]
q (17)

E-hailing without passenger competition
In this case, the matching time is still independent of W whereas the pickup time becomes a
function of V . Thus, we first solve the implicit function Eq. (14). With some algebra, we derive
the following equations:

V =
N − τ̂kq

2
+

√(
N − τ̂kq

2

)2

−
(
c1 −

c2
Rk

)
δq, (18)

∂NfV =
V 2

V 2 −
(
c1 − c2

Rk

)
qδ

, (19)

where τ̂k =
(
dka − 1

2

)
δ + τk can be interpreted as the exogenous trip duration.

Plugging Eqs. (18) and (19) into Eq. (15) yields

V ∗ =

√[
βmδk
c0Ak

+

(
1 +

βp

c0

)(
c1 −

c2
Rk

)
δ

]
q. (20)

Accordingly, the optimal system cost is given by

c∗ = 2c0V
∗ +

[
βmδk
2

+ (c0 + βp)

(
dka +

1

2

)
δ + βaw

k
a + (c0 + βτ )τk

]
q (21)

= 2c0

√[
βmδk
c0Ak

+

(
1 +

βp

c0

)(
c1 −

c2
Rk

)
δ

]
q

+

[
βmδk
2

+ (c0 + βp)

(
dka +

1

2

)
δ + βaw

k
a + (c0 + βτ )τk

]
q

E-hailing with passenger competition
In this case, we need to solve both implicit functions:

W =
δkqV

2(V − δkq)
(22)

V =
N − τ̂kq

2
+

√(
N − τ̂kq

2

)2

−
(
c1 −

c2
√
AkW

Rk

)
q. (23)

Note that Eq. (23) still involves W and thus ∂NfV cannot be directly solved as in the previous
cases. Instead, we consider the right-hand-side of Eq. (23) as a function hV (N,W ) and conduct
implicit differentiation. Accordingly,

∂NfV =
∂NhV

1− (∂WhV )(∂V fW )
(24)

=
V 2

V 2 −
[
c1 − c2

Rk

(
1 + W

V

)√
AkW

]
qδ
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Plugging into Eq. (15) yields

V ∗ =

√{
βmδkW ∗

c0

(
1 +

2W ∗

V ∗

)
+

(
1 +

βp

c0

)[
c1 −

c2
Rk

(
1 +

W ∗

V ∗

)√
AkW ∗

]
δ

}
q, (25)

where W ∗ is the unmatched passenger density under V ∗ as per Eq. (22). Thus, solving Eq. (25)
gives us V ∗ as a function of q. However, the exact form of such an equation is challenging to
derive. Instead, we numerically solve V ∗ with various q and explore their relationship. The default
parameters used in these numerical experiments are reported in Tab. 1.
Fig. 3 illustrates both sides of Eq. (25) as a function of V under different demand rates q. V ∗

is then given by the intersection of two curves, which increases with q as expected. We then
numerically solve V ∗ at each q by bisection search and plot the results in Fig. 4, along with those
in e-hailing without competition. It can be observed that V ∗ with passenger competition first
increases sublinearly below the case without passenger competition (Eq. (20)). This is expected
as fewer vehicles are required when holding some passengers waiting. As q continues to increase,
however, the relationship becomes linear and V ∗ with competition exceeds the other case. As
will be shown later, this seemingly counter-intuitive result is due to the violation of assumption
AkW < 1 in the case of no competition.
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Figure 4: V ∗ in e-hailing.

A simple linear approximation is also plotted in Fig. (4) and fits well when q is relatively large
(> 0.004 pax/s/arc) with an intercept close to zero (0.0098). Also, in theory, V ∗ should reduce
to zero when q = 0 (when there is no demand, the optimal fleet size is also zero). Therefore, we
propose to approximate V ∗ by a simple linear function

V ∗(q) = ηq, (26)

and thus the unmatched passenger density is also a linear function of q, which reads

W ∗(q) =
ηδk

2(η − δk)
q. (27)

Finally, the optimal system cost is derived as

c∗ = c0

{[
η +

βmδk
c0

δk
2(η − δk)

]
q +

δ

η

(
1 +

βp

c0

)[
c1 −

c2
Rk

√
ηδkAkq

2(η − δk)

]}
(28)

+

[
βmδk
2

+ (c0 + βp)

(
dka +

1

2

)
δ + βaw

k
a + (c0 + βτ )τk

]
q

Comparing Eqs. (17), (21) and (28), one can easily observe the optimal system cost consists of
two parts: (i) cost related to matching that can be represented as the extra supply cost to sustain
a certain demand rate, and (ii) cost independent of matching that is proportional to the demand
rate.
The impact of walking reflects in the second part. On the one hand, it helps reduce pickup and in-
vehicle times and thus saves these costs on both sides of the market. On the other hand, passengers
endure an extra walking cost. As will be shown in the numerical results, when the walking distance
is reasonable and the vehicle unit cost is high, the former effect is dominant. Besides, the benefit
is more significant in street-hailing because walking also helps increase vehicle cruising efficiency.
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The more intriguing findings regard the impact of passenger competition. The marginal costs in
the three scenarios discussed above are given by

Street-hailing w/o competition: mc∗(s,w/o) =
B(s,w/o)√

q
+ C(s,w/o), (29)

E-hailing w/o competition: mc∗(e,w/o) =
B(e,w/o)√

q
+ C(e,w/o), (30)

E-hailing w competition: mc∗(e,w/) = −
B(e,w/)√

q
+ C(e,w/), (31)

where Bk, Ck, k ∈ {(s, w/o), (e, w/o), (e, w/)} are constants determined by the exogenous variables.
It thus concludes that both street-hailing and e-hailing exhibit increasing returns to scale when
there is no passenger competition, whereas e-hailing leads to decreasing returns to scale when there
exists passenger competition. Further, we can compare B(s,w/o) and B(e,w/o) to which service has
a more considerable scale economies:

B(s,w/o) = c0

√
βmδk
c0Ak

, (32)

B(e,w/o) = c0

√
βmδk
c0Ak

+

(
1 +

βp

c0

)(
c1 −

c2
Rk

)
δ. (33)

As per Eqs. (32) and (33), the two scalars are only different in the term
(
1 +

βp

c0

)(
c1 − c2

Rk

)
δ.

Our numerical results suggest the parameters c1 = c2 = 1/6 and the matching radius in e-hailing is
often large (e.g., Rk = 14 with a threshold pickup time of 4 min). Therefore, it is safe to conclude
B(s,w/o) < B(e,w/o) and thus the street-hailing enjoys higher economies of scale. This result also
aligns with empirical evidence (e.g., Zhang et al., 2019; Frechette et al., 2019).

Numerical experiments

In this section, we compare the system performances in different scenarios under the optimal fleet
size. The values of exogenous variables and approximation parameters are reported in Tab. 1.

Existence of passenger competition
Recall that e-hailing presents the opposite scale economies with and without passenger competition.
Hence, we first examine whether passenger competition often exists in an e-hailing market. Fig. 5
plots the number of unmatched passengers within a matching area (i.e., AkW ) solved for DS and
DE under the assumption of no passenger competition. Clearly, for most tested demand levels,
the condition AkW < 1 holds for DS. In contrast, the assumption is easily violated for DE due
to its much larger matching area. In other words, the increased matching radius of e-hailing not
only reduces the matching friction between passengers and vehicles but also induces considerable
competition among passengers. This phenomenon has also been recognized in some previous work
(e.g., Zhang et al., 2019), but unfortunately not yet been widely adopted in recent studies on
e-hailing services. Due to this observation, in what follows, we only present results of the model
for e-hailing with passenger competition.
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Figure 5: Violation of assumption on passenger competition.
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System performance
Figs. 6 and 7 plot the composition of passenger waiting time and vehicle operation time at different
demand levels. For e-hailing, the pickup time is deducted from the original walking time. This
is because, in practice, passengers usually start walking after they are matched. Accordingly, the
total waiting time is the matching time plus the maximum between the walking time and the
pickup time. Because of the small matching radius in street-hailing, passengers spend most of
their waiting time in matching while vehicles spend most of their vacant time (idle or pickup)
in cruising. On the other hand, the pickup time takes a majority of passenger waiting time and
vehicle vacant time in e-hailing, whereas its fraction reduces rapidly with the demand rate.
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In the tested scenarios, walking does not really help passengers reduce their total waiting time
because its benefit in improving the matching and pickup times is rather minor. Specifically, it does
not help street-hailing passengers reduce their matching time as expected. A closer investigation
reveals that this is mainly due to the decreased idle vehicle density. Although walking induces a
higher concentration of vehicles on major streets, which yields a larger θk in Eq. (2), the optimal
idle vehicle density becomes further lower, and thus the matching time increases.
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Nevertheless, as shown in Fig. (7), walking does help reduce the required vehicle supply to sustain
the same level of demand, both for street-hailing and e-hailing. Besides, it can be found that most
of the vehicle time is occupied. This finding deviates from the empirical observations that the
vehicle utilization rate is often lower than 60% (Schaller, 2017). We note that this discrepancy is
largely due to the fleet sizing objective. In 11, we aim to minimize the system cost, whereas, in
practice, the fleet size is often determined to maximize the operator’s profit or a consequence of
drivers’ competition. In these cases, the fleet size is normally smaller than that at system optimum
(Douglas, 1972).
The large contribution of occupied vehicle time also leads to a quite linear system cost illustrated in
Fig. 8a. In brief, the four studied scenarios share very similar costs when the demand is relatively
low. As the demand rate increases, street-hailing presents a better efficiency. Walking benefits
both service types, while, as expected, it brings a larger cost saving to street-hailing, which is
better illustrated in Fig. 8b. Nevertheless, all these differences are rather small compared to the
total system cost.

Adaption of autonomous vehicles (AVs)
In face of the increasing labor cost, many e-hailing platforms are proposing to replace human-
driven vehicles with autonomous vehicles (AVs), which are believed to have a lower operation cost
meanwhile fully controllable. In what follows, we compare the system performance of DE and WE
by only changing the vehicle unit cost c0 to reflect the adaption of AVs. Here, the demand rate is
set to be q = 0.001 pax/s/arc.
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Figure 9: System performance with AVs.

As shown in Fig. 9a, the adaption of AVs reduces both the matching time and the pickup time
because more idle vehicle time is devoted to cruising. Consequently, passengers enjoy a shorter
waiting time in DE with an AV fleet. However, the benefit of walking diminishes, both for
passengers (Fig. 9a) and for the system as a whole (Fig. 9c). On the supply side, the impact of
AVs is rather minor. The lower cost of AVs does not induce a much larger supply size and the
benefit of walking in terms of reducing the fleet size remains similar. Moreover, although the unit
cost of AVs is one-fourth of human-driven vehicles, the system cost only cuts in half.

4 Conclusions

In this study, we model the street-hailing and e-hailing services on a grid network and analyze their
scale economies with system optimum fleet size. We show the existence of passenger competition
plays a critical role in the returns to scale. Without passenger competition, both street-hailing
and e-hailing exhibit increasing returns to scale, while the scale effect in street-hailing is more
significant. However, when subject to passenger competition, e-hailing shows decreasing returns
to scale. Through numerical experiments, we show this is very likely to happen due to the large
matching radius of e-hailing.
Although walking does not fundamentally change the scale economies, it produces two opposite
impacts on the system cost. On the one hand, it reduces the pickup and in-vehicle times and
specifically increases the matching efficiency in street-hailing. On the other hand, it imposes an
extra cost on passengers. Our numerical results show that the cost-saving effect is in general more
profound. However, when AVs are adapted with a much lower unit cost, the benefit of walking
diminishes.
As a future direction, we will continue validating our findings with simulations on general road
networks and demand profiles. It is also interesting to further analyze the scale economies with
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different objectives in the fleet sizing problem (e.g., profit-maximization as in a monopoly market).

Table 1: Notations and default values

Variable Description Unit Value
K number of local streets between every two major

streets
3

s length of each street segment m 120
v vehicle travel speed on major street km/h 25
αl speed scaling factor for local street 1.67
αa speed scaling factor for walking 5
Rs matching radius in street-hailing 1
Re matching radius in e-hailing 14
As matching area in street-hailing 4
Ae matching area in e-hailing 420
δs matching interval in street-hailing s 20
δe matching interval in e-hailing s 20
δ time to drive through one segment of major street s 17.28
τ̄ average door-to-door trip duration s 656.5
c0 operation cost per human-driven (autonomous) vehicle $/h 20 (5)
βm value of time for matching $/h 15.00
βp value of time for pickup $/h 12.51
βa value of time for walking $/h 14.51
βτ value of time for in-vehicle time $/h 10.00
θDS(θWS) vehicle density correction factor in street-hailing 1.345 (1.94)
c1 first approximation parameter for pickup distance 1/6
c2 second approximation parameter for pickup distance 1/6
η approximation parameter for the optimal idle human-

driven (autonomous) vehicle density
30.05 (41.00)
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