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Short summary

Travel behaviour modellers are increasingly interested in using models from outside the traditional
choice modelling area, first incorporating ideas from behavioural economics, such as in regret
modelling, before looking at mathematical psychology and machine learning. A key question arises
as to how well these different models perform in prediction, especially when predicting trips of
different characteristics from those used in estimation. This paper first compares the elasticities
and model fit of different models, bringing together models as diverse as logit, random regret,
decision field theory and neural networks. We highlight differences in elasticities and also note
that the prediction performance deteriorates at different rates for different models when moving
further away from the estimation data. We then develop a model averaging approach that allows
us to make the most of the entire collection of models and estimate weights for different models as a
function of distance away from the estimation sample. Keywords: choice modelling; forecasting;
machine learning; mathematical psychology; mode choice; model averaging

1 Introduction

The travel behaviour modelling literature has focussed extensively on two sorts of models, namely
models for inference (henceforth inference models) and models for forecasting (henceforth forecast-
ing models). Inference models aim to understand current travel behaviour (e.g. to recover the
value of travel time), while forecasting models aim to forecast future travel behaviour in new set-
tings (e.g. due to transport policies, such as toll roads and fuel levies). In other words, forecasting
models are developed to generalise out-of-distribution.
Inference models and forecasting models are evaluated differently by analysts. When building an
inference model, an analyst is keen that the model generates behaviourally plausible insights into
causal factors and their relative impacts. Additionally, for inference models, it is well recognised
that they should be able to replicate the behaviour in the empirical data as well as possible. In
general, analysts perceive a high model fit as a proxy for a good model. The rationale is that the
higher the likelihood of the empirical data given the model, the more reliable the results must be.
Given this model evaluation approach, it should come as no surprise that researchers in the travel
behaviour field are increasingly attracted by the comparatively good prediction performance of
machine learning approaches (cf. Hagenauer & Helbich, 2017).
For forecasting models, the focus during evaluation is typically on elasticities. A widely held view
is that forecasting models must produce behaviourally plausible elasticities, i.e. changes in demand
in response to changes in journey characteristics. Furthermore, forecasting models are evaluated
on their behavioural soundness. The dominant - although not necessarily evidenced-based - view
is that forecasting models with a solid behavioural underpinning, such as Random Utility Maximi-
sation (RUM) based discrete choice models, are better equipped to forecast behaviour under new
settings than are models with a weak or no behaviour underpinning, such as e.g. machine learning
models (cf. van Cranenburgh et al., 2022).
However, what is currently less well understood is how to value and incorporate model performance,
i.e. in the model fit on the empirical data, when developing forecasting models. What is clear is
that good model performance is not sufficient to establish that a model will make good out-of-
distribution predictions. The fact that model parameters are estimated by maximising the model
performance on the empirical data, i.e. how well they replicate current choices, is somewhat at
odds with the aim of forecasting: to generalise out-of-distribution. The choice modelling literature
has at times recognised that more advanced models that offer a better fit on the empirical data
do not necessarily lead to better forecasts (see e.g. Fox et al., 2014). But the question is still
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open on how to develop forecasting models considering the model’s performance and behavioural
underpinning. After all, it is intuitive that the performance of a model on the empirical data still
pertains to relevant information on its ability to generalise out-of-distribution.
The aim of this paper is twofold. First, we aim to quantify the deterioration of prediction perfor-
mance as a function of the “distance" between the training data and forecasting scenarios for models
with varying levels of behavioural underpinning. Second, we aim to develop a model averaging-
based approach that reduces the bias in forecasts by assigning different weights to different models
depending on this “distance". Using this model, we aim to not only develop a flexible tool for
combining models, but to craft rules-of-thumb for the conditions under which what sort of models
perform best in terms of out-of-distribution forecasting.
The key hypotheses of the present paper are as follows:

1. Good absolute in-sample prediction performance does not necessarily translate into accuracy
of elasticities.

2. Prediction performance for all models deteriorates as a function of the “distance" between
the training data and scenarios for which a prediction is made.

3. Models with a solid behavioural underpinning will increasingly perform better than models
without behavioural underpinning at increasing ”distance”.

4. Flexible models and models with a weak or no behaviour underpinning will suffer from a
considerable spread in out-of-distribution generalisation performance.

2 Methodology

Datasets

We use two different revealed preference datasets in this study, both focussing on mode choice.
The first dataset comes from a large-scale survey conducted as part of the DECISIONS project
carried out by the Choice Modelling Centre at the University of Leeds (Calastri et al., 2020). The
data used for this work corresponds to the observed mode choice behaviour where after extensive
data cleaning and data enrichment (Tsoleridis et al., 2022), 12,524 trips made by 540 individuals
remained. For each trip, individuals travelled by one of six modes: car, bus, rail, taxi, cycling or
walking. Attributes of the alternatives used in the models include in vehicle travel time, out of
vehicle travel time, and travel cost.
The second dataset is the London mode choice data compiled by Hillel et al. (2018). This dataset
contains four alternatives: walking, cycling, public transport (grouping together bus and rail) and
driving. We use a sample of 81,086 trips. Attributes of the alternatives used in the models include
in vehicle travel time, out of vehicle travel time, interchanges, and travel cost.

Model types

The following individual models were used in our analysis, combining models from traditional
choice modelling, mathematical psychology and machine learning:

Logit models: Standard multinomial Logit models using three different specifications, namely a)
linear in attributes; b) log-linear in attributes; and c) linear plus log-linear in attributes.

Nested logit models: Nested Logit using three different specifications, namely a) linear in at-
tributes; b) log-linear in attributes; and c) linear plus log-linear in attributes. In terms of
nesting structure, the DECISIONS models grouped together public transport options in a
nest, while the London models grouped together motorised modes vs active modes.

Random regret minimisation (RRM): RRM models were used, treating attributes as linear,
and with different constants depending on choice set size given varying mode availability in
the DECISIONS data.

Decision field theory (DFT): DFT is a dynamic, stochastic model, introduced by Busemeyer
& Townsend (1993). The key idea of the DFT model is that the preferences for different
alternatives update over time whilst the decision-maker considers the different alternatives
and their attributes. We use the implementation of T. O. Hancock et al. (2019).
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MultiLayer Perceptron (MLP): This model comprises an input layer with input nodes, one
or more hidden layers with hidden nodes, and and output layer with output nodes. In this
model, signals propagate forward through the links connecting the nodes. The links have a
numeric weight w, which is learned from the data. At each node, the weights are multiplied
with the input value from the previous nodes and summed. Then the signal is propagated
to the next layer using an activation function. We use tanh activation functions. In the
output layer, a Softmax function (i.e. a logit) is applied to produce choice probabilities for
each alternative.

XGBoost (XGB): The XGB model comprises a series of sequentially applied decision trees. A
decision tree is a sequence of simple IF-THEN rules, optimised to classify data accurately.
In the XGB model, each decision tree in the sequence ‘corrects’ the mispredictions of the
models before it. This process is referred to as ‘boosting’. The word ‘gradient’ relates to the
notion that each subsequent decision tree is fitted on residuals of the trees before it.

Identifying the role of “distance"

To study the impact of distance from the estimation data, we first divided the samples into 10
subsets by distance, e.g. using the 10 percent of shortest trips for the first segment.
Distance segments 1 and 10 were excluded from the model fitting work to retain them for later
out-of-distribution validation. Five separate models were then estimated for each model type on
rolling subsets of the data combining 4 distance segments, e.g. segments 2-5 for the first model, 3-6
for the second, etc. Let us define Mm,g to be the model of type m estimated on distance grouping
g, where, e.g. with g = 1, we would use distance segments 2-5.
Finally, each of the estimated models was used to make a prediction of each trip in the data,
independently of the distance segment for that trip, so e.g. also using models estimated on segments
2-5 only to predict mode choice for trips in distance segment 9.
Model estimation relied on 80% of the sample, with the remaining 20% kept for later out-of-sample
and out-of-distribution prediction.

Model averaging approach

The final step of the work uses a model averaging approach, as outlined for example by S. H. A. D. Han-
cock Thomas O. & Fox (2020). Model averaging relies on a sequential latent class approach, where
M different models have been estimated on the data, with model m giving a likelihood Pn,m for
the choice in observation n (working either at the person or observation level).
The model averaging log-likelihood is then given by

LL =

N∑
n=1

log

M∑
m=1

πn,mPn,m, (1)

where πn,m is the estimated weight given to model m for observation/person n, where this is given
by:

πn,m =
eγ

′
mzn∑M

l=1 e
γ′
lzn

, (2)

with an appropriate normalisation, where zn are characteristics of person/observation n.
Model averaging typically estimates each model on the entire data and then computes the weights
by considering how well each model fits for each of the data points.
We use a different approach. Specifically, we rely not only on the observations on which the models
were estimated, given that each model uses only 4 distance segments, but include the prediction
performance of every model on each of the trips. This allows us to study how the weight assigned
by model averaging is a function of both the model type and how far, if at all, out-of-distribution,
the model is. In other words, we expect that the weight given to a model decreases as a function
of how far away the distance of the trip for each a mode choice is predicted is from the average
distance of trips on which the model was estimatd.
With this in mind, let Dg be the average distance of trips in distance grouping g, and let dn be
the distance of the specific trip for which we make a prediction, where we work at the level of
individual trips.
We then have that our log-likelihood is given by:
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LL =

N∑
n=1

G∑
g=1

log

M∑
m=1

πn,m,gPn,m,g, (3)

where G = 5.
Each observation in the model averaging process thus uses the predictions for all the different
model types for a given distance grouping. This approach produced better results than looking
jointly at predictions from all GM models in a single row.
The model averaging weights are now specified as

πn,m,g =
eδm+(γd,m(dn<Dg)+γi,m(dn>Dg))log||Dg−dn|∑M
l=1 e

δl+(γd,l(dn<Dg)+γi,l(dn>Dg))log||Dg−dn|
, (4)

where δm is a constant for model type m, and γd,m and γi,m are parameters capturing the influence
on class allocation when the distance of a trip is below, respectively above the average distance of
trips on which the model was estimated, where a non-linear transform was used.

3 Results and discussion

The work has produced a wealth of results of which we only focus on a subset in this brief paper.

Model fit comparisons

Figure 1 compares the model fit (using ρ2) in prediction for MLP and linear logit, as a func-
tion of the estimation and prediction segment. A positive differences indicates better fit for MLP
than logit. We note that the expected patterns emerge, with MLP overall predicting better in-
distribution than logit, but losing out when moving out-of-distribution, though with some excep-
tions.

Figure 1: Model prediction comparison between MLP and linear logit: DECISIONS data

Elasticities

Figure 2 compares the car cost elasticities for a subset of models estimated on the DECISIONS
data. We see differences as a function of which segment model was estimated on. For most models,
we see decrease in elasticities for models estimated on longer distance trips, but not for MLP and
especially XGB. This is an initial indication of differences in prediction results for different models.

Model averaging results

Figure 3 and 4 show the weights for different models generated by model averaging as a function of
the difference in the distance of the trip under question and the average trip distance used in model
estimation.Figure 3 shows the results for the DECISIONS data set; Figure 4 shows the results for
the London data set.
The results show a diverse patterns. Firstly, for both data sets we see thatthe MLP and XGB
models outperform the other models best close to the estimation distance,before tailing off with
increasing distance. Second, the behavioural models take over for larger distances. Epecially no-
table is how well DFT performs for trips much longer than the estimation data on the DECISIONS
data. But, in the London data this patterns is not visible. Third, for trips that are (much) shorter
than the estimation data, the log-linear logit model performs well, on both data sets.
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Figure 2: Car cost elasticity comparisons for select models: DECISIONS data

Figure 3: Model averaging weigths as a function of distance from estimation data: DECI-
SIONS data (log=log-linear logit, lol=linear plus log-linear logit, nli=linear nested logit,
nll=linear plus log-linear nested logit, nlo=log-linear nested logit, all other acronyms as in
main text)

4 Conclusions

This work has taken an important step forward in combining insights from different modelling
approaches for travel demand forecasting. Specifically, we have shown that different models predict
choices differently well depending on how far away from the estimation sample the prediction takes
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Figure 4: Model averaging weigths as a function of distance from estimation data: DECI-
SIONS data (log=log-linear logit, lol=linear plus log-linear logit, nli=linear nested logit,
nll=linear plus log-linear nested logit, nlo=log-linear nested logit, all other acronyms as in
main text)

place. This result is not surprising in itself, but is quantified by our work.
Building forth on these insights, we contribute bydeveloping a model averaging-based approach
that estimates weights for different models as a function of the distance away from the estimation
data.
In the full paper, we present more detailed results, including on model fit, prediction out of sample,
prediction completely out of distribution (i.e. distance segments 1 and 10), and full estimation
results for the models. We also hypothesise about possible other attributes that could be used to
measure ‘distance’ from the estimation data, going beyond trip distance alone.
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