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Short summary

Cycling as a clean, green, and environmentally friendly mode of transportation plays a crucial role
in society by fostering physical activity and a healthy lifestyle, reducing traffic congestion, and
improving mobility. To create more efficient strategies for promoting cycling, there is a need to
gain a better understanding of the influential factors on cyclists’ route choice behaviour. Electric
bikes (e-bikes) are an emerging technology that appeared to assist cycling by using battery-powered
motors. Researchers consider e-bikes as an emerging technology with its most certain effect being
easing up cycling. Hence, investigating individual route choice behaviour with respect to their
bike type can unveil new insights for cycling promotion. To this end, we used data collected via
a stated preference (SP) survey in Finland not only to investigate the factors affecting cyclists’
route choice behaviour but also to compare the behaviour of e-bikers with regular bike users (r-
bikers) in order to identify the changes that may happen by easing the pedalling fatigue due to
the pedal-assist feature of e-bikes. Our results indicate that low interaction with traffic, fewer
intersections, and separated bike facilities are the main factors unchanged to promote cycling
among r-bikers and e-bikers. Furthermore, we compare the outputs of simple Logit models (SLMs)
and random parameter Logit models (RPLMs) for r-bikers’ and e-bikers’ route choices to address
the impact of error correlation among observations in SP data. Our findings imply that the SP
data is well-designed to capture the preferences of the individuals accurately, so the observations
are not severely correlated, i.e., the IID assumption is held. This suggests that using SLMs can
lead to similar outputs with RPLMs, without increasing the complexity of the estimation process.
Keywords: Cycling, E-bike, Route choice, Discrete choice modelling.

1 Introduction

Motivation

Promoting active modes of travel provides many advantages, from decreasing air pollution to
declining obesity cases and related diseases (Sałabun et al., 2019; Anderson et al., 2022). One
popular active mode is cycling, which can be used for almost all purposes, including with kids and
for the elderly. With advancements in technology, there are solutions available that are believed to
decrease the physical strain of cycling. Pedal-assisted electric bikes (in short e-bikes) can help the
cyclist while pedalling, especially on routes with hills. It is proven to be effective on obese people
evidencing that the physical and mental status of overweight people in Australia has improved
after 12 weeks of e-bike cycling (Anderson et al., 2022).
It is worth noting that easing up the cycling pedalling is not enough to promote an active mode
to the rest of the currently passive transport users unless planned properly. Although bicycle
usage is promoted in many European countries, different patterns regarding cycling have been
observed. For instance, France, Italy, and Germany have witnessed a more than 10% increase in
cycling demand, in 2020, compared to 2019, while Finland and Ireland lost more than 10% of their
weekday cyclist in the same period (Counter, 2021). One method to promote cycling in cities is
believed to be planning the infrastructures for absorbing cyclists. Therefore, planners must know
what measures affect cycling more (Broach et al., 2012; Huber et al., 2021).
A key cycling decision associated with transportation infrastructure is route choice. Researchers
usually employ route-choice modelling for active modes (e.g., bicycles) to assess the infrastructure
characteristics’ impacts on the mode users (Segadilha & Sanches, 2014; Bernardi et al., 2018).

1



Studies using these models conclude that length, maximum steepness, and the type of road signif-
icantly affect cyclists’ route choice. It can be concluded that safety and pedalling fatigue are the
main concerns reducing the cycling demand when the infrastructure, traffic laws, and affordability
of bikes are in place (Hull & O’Holleran, 2014).

Background

The literature on bicycle route choice is pretty rich and comprehensive reviews of influential factors
on the cyclists’ route choice behaviour can be found in previous studies (e.g., see Hull & O’Holleran
(2014), Tarkkala (2022), Huber et al. (2021), and Tarkkala et al. (2023)). Studies dedicated to
route choice of e-bikers or the change in the attitude of cyclists using e-bikes are limited but provide
interesting insights. Chavis & Martinez (2021) found that e-bikes increase the length that cyclists
ride, while they also reported shorter travel times for e-bikers than regular bike users (in short
r-bikers), which means a significant increase in speed is observed. Moreover, with the increase in
e-bike numbers, major roads were more frequently selected by cyclists than minor roads.
Rérat (2021) surveyed more than 2000 e-bikers and almost 11000 r-bikers, revealing an increased
usage of e-bikes by females (50% of e-bikers vs 40% of r-bikers), as well as an increase in average
age in the e-bikers. Regarding the season of cycling, it was observed that the e-bikers were almost
abandoning their bikes in winter, switching to public transport or other motorised modes, probably
due to the fact that e-bikes are used more frequently for longer trips than r-bikes.
Dane et al. (2020) provided mixed Logit models for r-bikers and e-bikers that show different factors
affecting their route choices. However, their study results in favour of longer trips for both e-biker
and r-bikers which is not in line with previous literature on the bike route choice models. They
have used the interaction of different variables with length to account for differences in length
for different groups of people which may have caused the positive sign of the length variable,
however, no clear effect was found. They stated that the positive sign may be caused by the
alternative generation algorithm they employed to generate the shortest paths. However, their
findings regarding differences in route choice of r-bikers and e-bikers refer to variables that cannot
be affected by specific policies (e.g., they found that daylight and weekday play major roles in
r-bikes and e-bikes usage.

Research Contributions

According to the background section, little attention has been paid to the e-bike’s effect on the
route choice of cyclists. Although general studies are available, they have not assessed the change
due to electrification and did not compare their results with route choice models with r-bikes.
Simply put, studies regarding changes due to e-bike usage have not comprehensively resulted in
the main variables responsible for r-bike and e-bike promotion. Hence, this research addresses this
gap in the body of literature that, to the best of the authors’ knowledge, has not been explored
before.
Accordingly, in this research, the effects of e-bikes on the route choice decision of cyclists are
investigated. We evaluate e-bikes’ effects on different aspects of cycling and route choice using
separate discrete choice models developed for cyclists with r-bikes and e-bikes. We evaluate the
effects of various factors on cyclists’ route choice while the pedalling is eased up by e-bikes. This
may cause some factors to have a decreased importance in the route choice. In fact, a contribution
of this research is to test the hypothesis that e-bikes change the important factors affecting cyclists’
route choice decisions that may be used in infrastructure planning.
The above-mentioned contribution is obtained by comparing bikers’ and e-bikers’ route choice
models, estimated using one source of data. The data used for this research is obtained through a
stated preference (SP) survey that provides us with the chance to analyze the findings regarding
route choice model specifications. The model specification may interfere with factors’ effects on
route choice. Two different types of models, i.e., simple Logit model (SLM) and random parameter
Logit model (RPLM), are estimated for each type of bike. Comparing the models including different
variables’ significance depicts the impacts of model specification on our main findings. Using an
SLM requires the errors to be independently and identically distributed (IID). On the other hand,
the error term in the RPLM is not bounded to these assumptions. As in this research, each choice
situation presented to respondents is considered an observation, the error terms of discrete choice
models may not be IID (Axhausen et al., 2006). Moreover, similar types of models are used in
(Meister et al., 2022) and for many other studies that are looking for the model specification effects
in their results (Brownstone et al., 2000).
Thus, the contribution of this research to the literature is threefold:
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1. investigating factors affecting route choice of e-bikers;

2. comparing r-bikers and e-bikers to identify the main affecting factors of cycling promotion
with less pedalling fatigue; and

3. analyzing the impacts of model specification on research findings.

The remainder of this paper presents the data and method we employ to investigate the route
choice behaviour of cyclists in Section 2; the outputs of the estimated models and the results’
interpretations in Section 3; Finally, conclusions are drawn in Section 4.

2 Methodology

Data Collection

To analyze the route choice of bikers concerning the technology of their bikes, and bicycle route
choice data, this study uses the SP data collected in Greater Helsinki, Finland. The study area
is a collaborative region of 14 municipalities and the Siuntio Municipality which has around 1.53
million population with 1.20 million living in the capital area. More details about the data can
be found in Tarkkala (2022). The data is gathered using a survey assessing the following general
factors: the presence or type of a bike facility, the road type, the vehicle traffic, the presence of
controlled intersections along the route, the route gradients, and its length. The survey was offered
online for one month during September 2021 and 1029 respondents filled out the questionnaire.
Figure 1 depicts one of the hypothetical choice situations used in the survey.

Figure 1: An example of a choice situation used in the survey

The characteristics of the sample population including trip purposes, age groups, their experience
in riding a bike, and the time of year they bike, are depicted in charts of Figure 2. The e-bikers
share of the respondents is almost 9.6% which is similar to the reported share from the market,
i.e., 9% (Kuva, 2020). Moreover, the share of female respondents from the filled questionnaire is
49.3% which is a fair share regarding the target society composition.

Method and Models

One of the common approaches to identify factors affecting route choice decisions is implementing
the discrete choice models. In this research, as said before, two different types of discrete choice
models are implemented: SLM and RPLM, which enables to investigate the model specification
impacts by comparing the models’ results.
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Figure 2: Understudy population characteristics; (a) Trip purpose, (b) Age, (c) Cycling
experience, and (d) Time of the year cycling

SLM estimates the probability of choosing each route based on a linear combination of factors
forming a utility value, as shown in Eq. (1). Since it is impossible to capture completely the
utility value; a utility function composed of two parts is employed: the deterministic part, Vin,
and the random/error part, ϵin, where i and n refer to alternative and individual, respectively.
The deterministic part of the utility is a linear combination of effective factors in which βik is
the coefficient related to kth variable representing individual or alternative characteristics, Xink.
Then, the probability of each alternative selection is derived using Eq. (2).

Uin = Vin + ϵin = βi + βi1Xin1 + βi2Xin2 + ...+ ϵin (1)

Pin =
exp(Vin)∑
j

exp(Vjn)
(2)

The RPLM relaxes the IID assumption by introducing a random term, which eventually changes the
error term to δi1Xin1 + ϵin, as shown in Eq. (3). Different assumptions regarding the distribution
of δi1 is possible, with the most common to be a normal distribution.

Uin = Vin + ϵin = βi + βi1Xin1 + δi1Xin1 + βi2Xin2 + ...+ ϵin (3)

This change in error term distribution would be addressed through simulation and the expected
probability of each alternative selection is derived by approximately estimating the result of
Eq. (4) (Train, 2009).

Pin =

∫ ∞

−∞

exp(Vin)∑
j

exp(Vjn)
f(δi1)dδi1 (4)

We estimate both models for r-bikers and e-bikers separately. The maximum likelihood method,
which is used for model calibration, estimates the covariance matrix of coefficients as well. The
results obtained through all four models are then compared to show the differences between r-bikers
and e-bikers as well as the significance of the impact of error correlation among observations.

3 Results and Discussion

Two sets of models (SLM and RPLM) are calibrated using Stata 17 (StataCorp, 2021) for r-bike
and e-bike route choices, and their results are presented in Table 1. For each type of model, two
models are presented for e-bikes’ route choice. The first one includes the same variables as the
r-bike model while the second one is without the variables found to be insignificant in the first
model. In RPLMs, the random parameter is the coefficient of the route’s length variable with the
normal distribution.
Then, Logit models of r-bikers and e-bikers are compared to identify the prominent factors affect-
ing the route choice of individuals, while the pedalling fatigue of cycling is removed due to the
electrification of bikes. Another comparison is made between SLMs and RPLMs for regular bikes
and e-bikes to evaluate the effect of error correlation on the effective route choice factors.
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Table 1: SLMs and RPLMs for e-bikers’ and r-bikers’ route choice
Row Variables SLM RPLM

R-Bikers E-bikers (1) E-bikers (2) R-Bike E-bike (1) E-bike (2)

1 Route consists of main streets 0.102** -0.01 - 0.411*** 0.103 -(2.22) (-0.07) (6.80) (0.60)

2 Route consists of arterial streets 0.253*** 0.024 - 0.366*** -0.084 -(4.04) (0.14) (6.16) (-0.48)

3 Route is mixed with vehicular traffic -0.846*** -0.731*** -0.873*** -1.089*** -0.848*** -1.010***
(-12.36) (-3.78) (-6.35) (-12.31) (-3.30) (-4.21)

4 Route is on a bike lane -0.221*** 0.234 0.293** -0.161* 0.447* 0.481***
(-3.15) (1.18) (2.15) (-1.80) (1.64) (1.80)

5 Route is on a separated adjacent path -0.203*** 0.024 - - - -(-3.75) (0.15)

6 Moderate traffic near bike facility - - - -0.501*** -0.500** -0.485**
(-7.52) (-2.37) (-2.28)

7 Heavy traffic near bike facility -0.749*** -0.663*** -0.791*** -1.678*** -1.542*** -1.639***
(-10.85) (-3.38) (-5.27) (-17.55) (-5.46) (-7.15)

8 Substantial traffic near bike facility -0.699*** -0.703*** -0.787*** -1.195*** -1.161*** -1.139***
(-8.98) (-3.18) (-4.79) (-15.40) (-5.21) (-5.33)

9 Route has controlled intersections -0.322*** -0.332*** -0.316*** -0.308*** -0.415*** -0.434***
(-15.14) (-5.44) (-5.56) (-11.09) (-5.25) (-5.42)

10 Route has hills -0.661*** -0.439*** -0.433*** -1.103*** -0.802*** -0.832***
(-17.45) (-3.85) (-3.81) (-15.17) (-4.14) (-5.38)

11 2nd variable and being female -0.246*** -0.479* -0.587*** -0.561*** -0.520* -0.485**
(-2.91) (-1.80) (-2.94) (-6.00) (-1.65) (-2.16)

12 3rd variable and being female -0.430*** -0.217 - - - -(-5.08) (-0.77)

13 4th variable and being female 0.153* 0.110 - - - -(1.77) (0.38)

14 7th variable and being female -0.236** -0.458 - -0.477*** -0.500 -(-2.53) (-1.46) (-4.26) (-1.30)

15 8th variable and being female -0.200** -0.230 - - - -(-2.04) (-0.77)

16 9th variable and being female 0.120*** 0.199** 0.148** 0.132*** 0.241** 0.236**
(4.76) (2.45) (2.34) (3.53) (2.05) (2.06)

17 10th variable and being female - - - -0.140 -0.164 -(-1.47) (-0.56)

18 3rd variable and being older than 65 -0.611*** -0.451 - - - -(-2.96) (-0.97)

19 4th variable and being older than 65 -0.490** 0.497 - - - -(-2.37) (1.17)

20 7th variable and being older than 65 - - - -0.717** 0.250 -(-2.33) (0.45)

21 9th variable and being older than 65 0.129** 0.017 - - - -(2.16) (0.14)

22 10th variable and being older than 65 - - - -0.356 0.226 -(-1.40) (0.52)

23 Route length -0.311*** -0.269*** -0.267*** -1.000*** -0.929*** -0.942***
(-22.48) (-6.28) (-6.39) (-25.65) (-7.48) (-7.56)

24 Standard deviation of the route length - - - 0.599*** 0.700*** 0.701***

25 Constant 2.850*** 2.359*** 2.379*** -0.101** 0.119 -0.270**
(31.33) (8.63) (9.03) (-2.48) (0.02) (-2.29)

*: 90%, **: 95%, ***: 99%
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R-bikers vs. E-bikers

Both sets of models verify the previous findings in the literature regarding the route choice be-
haviour of r-bikers. These findings consist of the negative influence of length and steepness on
the selection probability of a route. Moreover, less interaction with traffic through low adjacent
traffic and the provision of completely separated bike facilities are the main factors that remained
effective in r-bikers’ and e-bikers’ route choices. Some new insights are also observed for r-bikers.
Female cyclists are avoiding vehicular traffic and prefer controlled intersections in their routes more
than men. A similar attitude is observed for r-bikers older than 65 years.
On the other hand, e-bikes provide ease and a sense of confidence for cyclists that changes vehi-
cle avoidance preferences. The changes are clearly observable in previously cautious and maybe
vulnerable cyclists like females and old people. Since the e-bike route choice models can make
no distinction based on gender and age among e-bikers. For instance, we observed that r-bikers
older than 65 years find the traffic disturbing more than other r-bikers while e-bikers older than 65
years do not get bothered by heavy traffic. A similar attitude towards traffic situations is observed
in female cyclists. Some other differences e-bikes make in cyclist route choice behaviour can be
concluded as:

• The male cyclists’ preference towards main streets mitigates due to e-bikes while the corre-
sponding coefficient for females stays the same (negative) as r-bikers.

• The 65 years old and older cyclists riding e-bikes are not affected by the presence of hills
anymore.

• Although the length of the trip and hills are significant factors for both r-bikers and e-bikers,
yet, as expected, the impacts of these variables are much milder for e-bikers.

• E-bikers prefer bike lanes, which is not the case for r-bikers.

• Female r-bikers have significant preferences for traffic avoidance, compared to men, while all
e-bikers do not like heavy and mixed traffic almost similarly.

Furthermore, the results of the random parameter of the RPLMs indicate that the taste variation
is significantly present in both r-bikers and e-bikers’ route choices, due to the large value of the
standard deviation coefficient. However, the confidence interval for e-bikers ([-2.31, 0.43]) shows
more dispersion than the r-bikers ([-2.17,0.17]), implying that the e-bike increases the variation of
people’s opinions toward the length of cycling.

SLM vs. RPLM

In general, the outputs of the two types of models are quite aligned, especially for e-bikers, and
RPLMs results verify the findings from SLMs. In comparison to the RPLMs, more variables are
found significant in the SLM for the r-bikers’ route choice model (e.g., variables in rows 5, 12, 13,
15, 18, 19, and 21). Besides, there are a few significant variables in the RPLMs that are not found
significant in the SLM for r-bikers (e.g., variables in rows 6 and 20). These differences lead to the
following conclusions:

• The effect of substantial traffic on route choice is significant for female r-bikers with SLM,
whereas it is not significant using the RPLM.

• Controlled intersections are favourable for r-bikers older than 65 based on SLM which is not
significant using RPLM.

• Female and elderly r-bikers, based on SLM, are reluctant to cycle in routes with mixed
traffic, while RPLM does not confirm the significance of these interactive variables.

• Interestingly, no significant difference is observed between the two types of models for e-
bikers.

It should be noted that no significant difference is found between the coefficients’ signs of the two
types of models. These findings demonstrate that the SP survey is designed properly to capture
the preferences of the individuals so that the errors in the responses are not severely correlated.
This is why there are no substantial differences between the two models’ outputs.
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4 Conclusions

The differences in route choice behaviour between r-bikers and e-bikers are investigated in this
research. Two sets of models, SLM and RPLM, are estimated based on data gathered through a
stated preference survey. Both sets of models verify the previous findings in the literature regarding
the negative influence of length and steepness on the selection probability of a route by r-bikers.
Riding an e-bike, on the other hand, reduces the importance of the length of the trip and steepness,
and e-bikers care less about the type of facility, i.e., major or minor streets, that they are cycling
along.
From the transportation planners’ point of view, providing dedicated routes with no interruptions
from vehicular traffic can be introduced as the main effective factor in bike promotion. We observed
that women like to cycle in a completely dedicated path with signalized intersections that minimizes
the probability of colliding with other vehicles. Therefore, there is a trade-off between vehicles and
bike volumes.
Regarding the model specification, we realized that there is no substantial difference between
SLMs and RPLMs for e-bikers, in our case. This implies that the errors in the responses are not
severely correlated and can be assumed to possess the IID character. If the IID assumption holds,
it is considered to be a desirable property of the SP data, meaning that despite the hypothetical
situations and panel effect, respondents’ preferences do not affect the error terms. Hence, the
SLMs without increasing the complexity in the estimation process can lead to similar outputs with
RPLMs.
A major limitation of this research (shared with previous literature as well) is that respondents
are already cyclists; hence, the results cannot be simply used for addressing non-bikers about their
preferences and obstacles towards biking. However, focusing on cyclists is needed in this research
due to the fact that we were looking for the differences created by e-bike implementation.
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