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Short summary

Cycle Superhighways (CS) are the cycle routes that run between central London and outer London.
They were introduced in 2008 as a way to encourage cycling and improve safety. This paper
investigates the causal cycling demand and safety impacts arising from the introduction of CS.
The analysis uses road traffic and accident data from the Department for Transport in the UK.
Propensity score matching and panel outcome regression models are employed and compared to
estimate the effects of CS for two different infrastructure types - segregated and non-segregated.
Our results suggest that, on average, the intervention had a positive effect on cycle flow volume
and cycle accidents, but no statistically significant effect on the cycle accident rate. Nevertheless,
we find that segregated CS show a statistically significant decrease in cycle accident rate.
Keywords: cycleway investments, demand, safety, causal analysis, heterogeneous impact.

1 Introduction

Cycling has long been regarded as a healthy, economic, and environmental-friendly way of fulfilling
one’s day-to-day travel needs. With the aim to increase cycling in London, Cycle Superhighways
(CS) were introduced across London in 2008. Figure 1 presents an initial route map of the CS. CS
are cycle pathways extending from the outer parts of London to its centre1, that were developed
to enable safer, quicker, and more direct travel within the city. Several variants of CS have been
also introduced across North America, Australia and Europe to serve the longer distance cycle
commutes in metropolitan centres (Pucher & Buehler, 2017). The overarching aim of this paper
is to contribute to the growing empirical evidence on the impact of such cycling infrastructure
investments on cycle traffic and cyclist safety.

Figure 1: Route plan map of the Cycle Superhighways in London.

CS incorporated a variety of measures to improve cyclist safety including (Transport for London,
2011): (1) realigned traffic and bus lanes to create more space for cyclists on busy stretches of the

1https://tfl.gov.uk/modes/cycling/routes-and-maps/cycleways
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routes, (2) re-designed junctions to make them safer for cyclists (say, by removing left-turn slip
roads), (3) blind-spot visibility mirrors at signalised junctions in order to improve the visibility
of cyclists to heavy goods vehicle drivers, (4) new advanced stop lines and extensions to existing
ones (to a minimum of 5 meters) in order to help cyclists move away from traffic signals before
other traffic, and, (5) segregated cycle lanes at particularly busy sections of the routes, including
Stockwell Gyratory and Wandsworth Bridge roundabout. However, given the associated infras-
tructure costs, the initial implementation of CS drew widespread criticism. Opponents claimed
that the safety impacts of CS were overstated and referred to CS as nothing but blue paint2. It is,
therefore, imperative to understand the traffic impacts of CS, particularly those related to cyclist
safety. In this paper, we investigate the causal effect of CS on cycle flow volume, number of cycle
accidents, and cycle accident rate.
Several ex-post evaluations have been carried out in the past to understand the traffic impacts
of cycle lanes, especially in regards to collisions (see DiGioia et al., 2017, for a detailed review).
These studies mostly compare crashes before and after the deployment of cycle lanes to quantify
the effects of the intervention. We argue the impact estimated in these studies may suffer from
confounding biases which occur primarily from the non-random nature of such infrastructure in-
vestments. In other words, there may exist confounding factors that determine both the likelihood
of the intervention and the resulting demand and safety impacts. For instance, CS are more likely
to be chosen for roads with large cycle flow volumes, however, there is an inherent scale effect:
more cycling usually implies higher cycle-related accidents. Additional biases may emerge from
temporal trends in the data. Thus, the estimates derived from a simple before-after comparison of
demand and safety indicators may not reflect the true intervention effect.
In this study, we adopt causal inference approaches; (i) propensity score matching and (ii) panel
outcome regression with fixed effects; that allow an unbiased estimation of the causal effect by
effectively adjusting for such confounding factors. Our analysis uses road traffic and accident data
from the UK Department for Transport. The closest precedent to our analysis is the study by Li et
al. (2017) that quantified the causal impact of CS in London on cycling volume and collision rate
at the network (that is, aggregate) level. However, we exploit the granularity of the data in hand
to estimate the impact of CS for different infrastructure types - segregated versus non-segregated
CS. We thus contribute with novel insights on how segregated CS segments perform with respect
to the non-segregated ones.

2 Methodology

This section has two main subsections. The first subsection introduces the causal inference frame-
work, which is followed by a description of the methods used in this paper: propensity score
matching and panel outcome regression. Both of the methods are applied to compare the reliabil-
ity of estimation. In the second subsection, we summarise the relevant details of the data that we
use to estimate the impact of CS.

Causal Inference Framework

We use Rubin’s Causal Model Rubin (1974) to develop a causal inference framework as follows: Let
Zi = (Yi,Ti,Xi) represents the observed data, where i = 1, 2, · · · ,N . N is the total population.
Here, Yi is the outcome of interest for an individual unit i. Ti denotes the binary treatment
indicator. If Ti = 1, the unit i receives the treatment, otherwise, Ti = 0. Xi is the covariates,
describing the characteristics of unit i. The potential outcome is defined as Yi(T ) for each unit i.
Yi(1) and Yi(0) represent the potential outcomes for unit i under treatment and control respectively.
Then, the treatment effect for each unit i can be defined as:

τi = Yi(1)− Yi(0) (1)

However, we can only observe one of potential outcome of Yi(1) or Yi(0). As a result, we can not
directly estimate each unit treatment effect τi. Instead, we can estimate the average treatment
effect (ATE).

τATE = E[Yi(1)− Yi(0)] (2)

We can estimate the ATE if the following three assumptions hold.

2https://ecf.com/news-and-events/news/evolution-cycle-superhighways-london
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• Conditional Independence Assumption: This assumption means that given the observed
covariates X, the potential outcomes are independent of the treatment, i.e. Y (0),Y (1) ⊥⊥
T |X.

• Common Support - This condition requires that each unit i has a positive probability of
both receiving the treatment or not. There is no probability that one unit is always treated
or untreated: 0 < P (T = 1|X) < 1.

• Stable Unit Treatment Value Assumption(SUTVA) - The SUTVA requires that the observed
outcomes under a given treatment allocation must be equivalent to potential outcomes under
that allocation. i.e. Yi = I1(Ti)Yi(1)+(1− I1(Ti))Yi(0),∀i = 1, 2, · · · ,n, where I1(Ti) in the
indicator function for receiving the treatment.

All the three assumptions above are known as strong ignorability. Under this condition, the ATE
(2) can be estimated from the observational data. This can be demonstrated as follows:

τATE = E[Yi(1)− Yi(0)]

= EX [E(Yi(1)|Xi = x)− E(Yi(0)|Xi = x)]

= EX [E(Yi(1)|Xi = x,Ti = 1)− E(Yi(0)|Xi = x,Ti = 0)]

= EX [E(Yi|Xi = x,Ti = 1)− E(Yi|Xi = x,Ti = 0)]

(3)

Propensity Score Matching

Propensity Score Matching (PSM) is a statistical method to estimate an intervention or treatment.
The concept of PSM was first introduced by Rosenbaum and Rubin (1983) Rosenbaum & Rubin
(1983) and further developed by Heckman et al. (1997) Heckman et al. (1997). Suppose that we
want to compare the treatment effect between a control group and a treatment group. For example,
in this study, the treatment is the construction of Cycle Superhighways(CS) or not. The treatment
group contains those road segments with the installation of CS, while the control group includes
other road segments. A naive method to estimate the treatment effect is to directly compare
the difference between the two original groups. However, usually, the treatment is not assigned
randomly on each individual. There exist confounding variables which affect both the treatment
and the outcome.
To avoid this selection bias, we can do a matching between the control and treatment groups. PSM
is one of the matching methods. It first uses models like logit or probit models to estimate the
probability that each individual receives the treatment, which is called the propensity score (PS).
Here we use logit model, which is defined as:

P (T = 1|X) =
1

1 + exp(−(α+Xβ))
(4)

where α is the intercept and β is the coefficient vector. Then, each individual in the treatment group
is matched to the individual in the control group with similar propensity score. There are four main
matching algorithms: nearest neighbour matching, caliper and radius matching, stratification and
Interval matching, kernel and local linear matching. Finally, the treatment effect is estimated by
the difference between the two matched groups. If the strong ignorability assumption is satisfied
and the matching algorithm is the nearest neighbour matching, then the ATE can be estimated
by the following equation:

τ̂ATE =
1

NT

NT∑
i=1

(
Yi(1)− Ŷi(0)

)
(5)

where NT represents the total units of treatment group, Yi(1) is the outcome of ith unit in the
treatment group, Ŷi(0) is the closest unit in the control group in terms of propensity score distance
that is matched to the ith treatment unit. It should be noted that different matching algorithm
has different estimation equation. The main advantage of PSM is that it reduces the multiple
dimension of matching to a single dimension, i.e. propensity score. More details of PSM can be
found in Caliendo and Kopeinig (2008) Caliendo & Kopeinig (2008)

Panel outcome regression with fixed effects

One drawback of the propensity score matching method is that its performance highly relies on
the choice of confounding factors. If there exist significant confounding factors but unobserved,
the result may be unreliable. Thus, in order to control for these unobserved confounding factors,
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we also implement panel outcome regression to compare with PSM. There are four main kinds of
panel outcome regression models: pooled model, first differences, random effects and fixed effects.
Here we introduce panel outcome regression with fixed effects. For more details of other models,
see Wooldridge(2010) Wooldridge (2010).
Suppose that the data generating process is

yit = XT
itβ +WT

i γ + ϵit (6)

where XT
it is a K × 1 vector of observed time-variant covariates and WT

i is an J × 1 vector of
unobserved time-invariant covariates. ϵit is the error term. E[ϵit|Xit,Wi] = 0, i = 1, 2, · · · ,N ,
t = 1, 2, · · · ,T . The fixed effects model assumes that each individual has a unique attribute that
is constant through time. The panel model is

yit = αi +XT
itβ + ϵit (7)

One possible way to estimate is to use the within estimator. The formula is as follows:

yit − ȳi = (Xit − X̄i)
Tβ + (ϵit − ϵ̄i)

where ȳi, X̄i, ϵ̄i are the respective mean over time. The advantage of the fixed effect model is that
it can effectively deal with the unobserved time-invariant confounding factors. However, it fails to
control for the time-varying confounding factors.

Data

In this section, we describe the relevant datasets and variables we used in this study. There are
four main datasets which are highly related to this study: accident data, road data, cycleway data,
socioeconomic data.

• Accident data
The accident data is from STATS19, published by Department for Transport 3. This dataset
gives a detailed description of road accidents in Great Britain, including the date and location
of accident, vehicle type, casualty details and severity. In this study, we only focus on the
cycle-related accident data from 2000 to 2020 in Greater London.

• Road data
The road data is from road traffic statistics, published by Department for Transport4. This
dataset gives number of vehicles that travel past the count point on an average day of the
year. Here, we use the annual average daily traffic volume (AADT) and annual average daily
bicycle volume (AADB) from 2000 to 2020 in Greater London.

• Cycleway data
The cycleway data is from public TfL data5. The dataset records the position and type of
cycleway in London. In this paper, we mainly focus on the Cycle Superhighway.

• Socioeconomic data
The socioeconomic data is from Office for National Statistics (ONS)6 provides the data re-
lated to economy, population and society at national, regional and local levels in United
Kingdom. Here, we use the population density, employee numbers, index of multiple depri-
vation (IMD) at the level of Lower Layer Super Output Areas (LSOA).

In this study, the observation unit is LSOA. We use the count points in road data as basis and
link other dataset to the road data. To be more specific, for each record of the accident data, we
calculate its nearest count point in road data. If the nearest distance is less than a pre-defined
threshold (here we use 0.4 kilometer), then we can allocate the record to its nearest count point.
Similarly, for each record of the cycleway data and socioeconomic data, we can allocate it to its
nearest count point. And if the nearest distance of one record of cycleway data is greater than

3https://data.gov.uk/dataset/cb7ae6f0-4be6-4935-9277-47e5ce24a11f/road-safety-data.
4https://roadtraffic.dft.gov.uk/regions/6.
5https://cycling.data.tfl.gov.uk/.
6https://www.ons.gov.uk/.
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a pre-defined threshold (e.g 1.5 kilometer), we can assume that there is no construction of Cycle
Superhighway.
Although 12 CS routes had been planned, only part of them were put into use. In this paper, we
studied 6 CS routes. The detailed description of these 6 CS routes is in Table 1.

CS No. Open time Length Route Type
CS1 2016 April 9.5km The city to Tottenham Partly segregated two-way cycle tracks. Most shared with bus

CS2 2011 July 6.8km Stratford to Aldgate Segregated cycle tracks are rarely seen.
(Note: An upgradtion was added in 2016)

CS3 2010 July 12.3km Barking to Tower Hill Mostly segregated two-way cycle tracks.
CS5 2015 Autumn 1.4km Oval to Pimlico Completely segregated two-way cycle tracks.
CS7 2010 July 13.7km Merton to the City Segregated cycle tracks are rarely seen. Mostly shared with buses.
CS8 2011 July 8.2km Wandworth to Wesminster Segregated cycle tracks are rarely seen.

Table 1: The characteristics of each Cycle Superhighways

The distribution of these 6 CS routes can be seen in Figure 2.

Figure 2: The distribution of 6 CS routes

Here, we choose 80 road segments with construction of CS as the treatment group, and select 434
road segments as the control group. Their distribution can be found in Figure 3. The red points in
Figure 3 represent the CS segments (treatment group) while the blue points represent the control
segments.
It should be noted that the installation of Cycle Superhighways is not randomly assigned. There
exist some confounding variables which could not only affect the construction of Cycle Superhigh-
ways, but also influence the cycle accident rate. Here, we consider the following covariates: the
traffic flow volume, the bicycle flow volume, the number of previous accidents, population den-
sity, employees, IMD, bus density. The choice of covariates is based on empirical findings. The
description of the covariates is in Table 2.
In this study, the treatment variable is binary, representing presence of a Cycle Superhighway or
not. If there is no CS around a road segment in a pre-defined distance (e.g 1.5 kilometers), we
assume that there is no construction of CS in this road segment and the treatment variable is 0,
otherwise, it is 1. We define the pre-intervention period as the three years before the CS is open,
the post-intervention period as the three years after the open time. The outcome variables we are
interested, include average cycle accident rate, cycle flow volume, the number of cycle accidents
over the post-intervention period. The average cycle accident rate is defined as the mean of yearly
cycle accidents divided by AADB during the post-intervention period. The cycle flow volume is
reflected by the average AADB during the post-intervention period. The number of cycle accidents
is the total number of cycle related accidents that happened during the post-intervention period.
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Figure 3: The distribution of treatment and control samples

variable description mean std min max

AADB_pre Annual average daily bicycle volume
in the pre-intervention period 387.66 728.87 0.00 7167.33

AADT Annual average daily traffic volume
in the pre-intervention period 29666.31 24101.18 1825.66 202912.33

accident_pre Total accident nums
in the pre-intervention period 2.59 4.27 0.00 28.00

Population Density population density in LSOA 75.77 51.06 1.16 437.04
Employees Number of employees in LSOA 1468.48 5565.53 0.00 52000.00
IMD The index of multiple deprivation 25.37 13.44 2.68 62.57
bus density Number of bus stop within 0.5 km 13.38 6.47 0.00 35.00

Table 2: Descriptive statistics of the covariates

3 Results and discussion

In this section, we will estimate the effect of Cycle Superhighway (CS) on cycle accident rate,
cycle volume and the number of cycle accidents. We will implement both PSM and panel outcome
regression with fixed effects and compare the relative results. "MatchIt" package (?) in R is
applied to perform the PSM. There are various kinds of matching methods in this package. Here,
we use full matching because it performs quite well for the balance and overlap test. Next we will
check the covariate balancing. The summary is in Table 3. Table 3 shows that all the variables are

Std. Mean difference M.Threshold Variance Ratio
distance 0.0123 Balanced, <0.1 0.9936
AADB_pre -0.0389 Balanced, <0.1 1.1077
AADT 0.0481 Balanced, <0.1 0.4973
accident_pre 0.0454 Balanced, <0.1 1.2428
Population.Density -0.2404 Not Balanced, >0.1 1.3790
Employees 0.0606 Balanced, <0.1 0.3864
IMD 0.0386 Balanced, <0.1 1.1947
bus.density -0.0576 Balanced, <0.1 0.7224

Table 3: Summary of balance for matched data

well-balanced except population density. The standardized mean difference of population density
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is -0.2404. The absolute value is still not too big and population density may be considered as less
important compared to other road characteristic variables. As a result, we can assume that the
covariates achieve balance after matching.
Then, we check the overlap test by comparing the distribution plot of propensity score. The plot
is in Figure 4. Figure 4 shows that before matching, the distributions of propensity score between
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Figure 4: Overlap test

treatment and control groups are quite different. However, after matching they are similar to each
other. Thus, there is support for the overlap assumption being verified.

Effect of CS on cycle accident rate

We can estimate the treatment effect ATE using the standard linear regression with matching
weights. The coefficients and standard errors can be estimated by the lmtest (?) and sandwich
packages (?) in R. First, we consider the effects of CS on cycle accident rate. The result is in
Table 4.

Estimate Std. Error t value Pr(> |t|)
(Intercept) 62.0057 32.2701 1.9215 0.0561
CS_or_not 11.0589 23.6364 0.4679 0.6404
AADB_pre -0.0401 0.0130 -3.0847 0.0023
AADT 0.0009 0.0003 2.7053 0.0074
accident_pre 1.8630 1.0624 1.7536 0.0811
Population.Density 0.0455 0.1462 0.3113 0.7559
Employees -0.0037 0.0015 -2.5259 0.0123
IMD -1.5655 0.7903 -1.9808 0.0490
bus.density 0.5267 0.4907 1.0733 0.2845

Table 4: t test of coefficients (CS on cycle accident rate)

From Table 4, we can see that the p−value of CS_or_not is 0.6404, which indicates that the CS
has no significant effect on the cycle accident rate. Then, we will use panel outcome regression
with fixed effect to estimate the effect of CS on cycle accident rate. This can be achieved by using
the "plm" package (?) in R. The result is in Table 5.
We can see that in Table 5, the p−value for CS_or_not is 0.51 and the R2 is 0.00119. This means
that the effect of CS on cycle accident rate is also not significant and the model does not fit well.
The result of panel outcome regression is similar to the one of PSM. Both of them suggest that
there is no significant effect of CS on cycle accident rate.
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Estimate Std. Error t-value Pr(> |t|)
CS_or_not 1.50e+02 2.25e+02 0.67 0.51
AADT 9.74e-03 1.48e-02 0.66 0.51
R2 0.00119

Table 5: Summary of panel OR(CS on accident rate)

Effect of CS on the cycle volume

In this section, we will examine the effect of CS on the cycle volume. The result for PSM is in
Table 6. From Table 6, the p−value for CS_or_not is 0.0029 and the estimated coefficient is 273.

Estimate Std. Error t value Pr(> |t|)
(Intercept) -1.82e+02 1.78e+02 -1.02 0.3069
CS_or_not 2.73e+02 9.02e+01 3.02 0.0029
AADB_pre 1.11e+00 8.12e-02 13.68 <2e-16
AADT -5.89e-04 7.69e-04 -0.77 0.4446
accident_pre -1.74e+01 2.35e+01 -0.74 0.4593
Population.Density 3.22e-01 6.53e-01 0.49 0.6229
Employees 5.02e-03 2.72e-03 1.85 0.0666 .
IMD 4.00e+00 3.53e+00 1.13 0.2584
bus.density -2.77e+00 6.43e+00 -0.43 0.6668

Table 6: t test of coefficients (CS on the cycle volume)

This indicates that the introduction of CS significantly increased the number of cycle volume. In
average, it could increase 273 in the number of AADB.
The result of panel outcome regression with fixed effects is in Table 7. From Table 7, the p−value

Estimate Std. Error t-value Pr(> |t|)
CS_or_not 3.32e+02 9.38e+01 3.54 0.00065
AADT 6.52e-04 1.22e-02 0.05 0.95741
accident_num -2.56e+01 1.89e+01 -1.36 0.17835
R2 0.137

Table 7: Summary of panel OR(CS on the cycle volume)

of CS_or_not is 0.00065 and the estimated coefficient is 332. This also indicates that the CS has
a significant effect on the cycle volume. The result is consistent with the previous PSM result and
the coefficient 332 is close to 273, which is the coefficient using PSM. As a result, we can conclude
that CS significantly increased the cycle flow volume.

Effect of CS on the number of cycle accidents

We will next estimate the effect of CS on the number of cycle accidents. The result of using PSM
is in Table 8. In Table 8, the p−value of CS_or_not is 0.0113 and the estimated coefficient is 1.64.
This suggests that the CS significantly increased the number of cycle accidents.
The result of panel outcome regression is in Table 9. The p−value of CS_or_not is nearly 0 and
estimated coefficient is 2.46. The result is also similar to the previous PSM result. As a result,
both PSM and panel OR method suggest that the CS significantly increased the number of cycle
accidents.
So far, we have found that overall, the CS significantly increase the cycle flow volume and the
number of cycle accidents with no significant effect on the cycle accident rate. However, as shown in
Table 2, each CS has different segregated condition. Among them, CS5 is the only fully segregated,
while CS2, CS7, CS8 rarely have any segregation installation. Considering the heterogeneity in
different CS routes, we will perform the causal analysis on each CS route and study the effect of
segregation.
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Estimate Std. Error t value Pr(> |t|)
(Intercept) -4.69e-01 1.49e+00 -0.31 0.7533
CS_or_not 1.64e+00 6.42e-01 2.56 0.0113
AADB_pre 1.42e-03 5.46e-04 2.60 0.0101
AADT -1.91e-05 8.51e-06 -2.25 0.0256
accident_pre 7.98e-01 8.29e-02 9.62 <2e-16
Population.Density 2.20e-03 4.72e-03 0.47 0.6417
Employees 9.16e-05 3.19e-05 2.87 0.0046
IMD 1.26e-02 2.22e-02 0.57 0.5690
bus.density 8.38e-02 4.52e-02 1.85 0.0654

Table 8: t test of coefficients (CS on cycle accidents)

Estimate Std. Error t-value Pr(> |t|)
CS_or_not 2.46e+00 2.22e-01 11.06 <2e-16
AADB -7.15e-04 2.60e-04 -2.75 0.0062
AADT -2.82e-05 1.39e-05 -2.03 0.0427
R2 0.181

Table 9: Summary of panel OR(CS on the cycle accidents)

The safety effect of different CS routes

In this subsection, we evaluate the impact of each CS route. The result using PSM is in Table 10.
The result using panel outcome regression with fixed effects is in Table 11.

Estimate Std. Error t-value Pr(> |t|)
CS1 1.5860 3.4992 0.4532 0.6541
CS2 3.9906 2.8908 1.3804 0.1843
CS3 3.5691 4.7206 0.7561 0.4539
CS5 -5.6549 1.9912 -2.8400 0.0078
CS7 7.7870 5.2608 1.4802 0.1492
CS8 -2.1071 2.5961 -0.8116 0.4188

Table 10: Summary of the effect of each CS using PSM

Estimate Std. Error t-value Pr(> |t|)
CS1 -53.9521 335.71 -0.1607 0.8725
CS2 257.69 252.90 1.0190 0.3098
CS3 101.13 115.12 0.8785 0.3806
CS5 -16.7454 181.34 -0.0923 0.9265
CS7 353.40 274.82 1.2859 0.2003
CS8 141.57 227.91 0.6212 0.5353

Table 11: Summary of the effect of each CS using panel OR

In Table 11, the result using panel outcome regression still does not show any significance. From
Table 10, we can see that although other CS routes still do not show any significant effect, the
p−value of CS5 is less than 0.05 and the estimated coefficient is −5.6549. This implies that CS5
significantly decreases the cycle accident rate. In Table 1, we can see that CS5 is the only CS route
that is fully segregated. This indicates that the existence of segregation may be a crucial factor
that influences the cycle accident rate.
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The effect of Segregation on CS road

In this subsection, we will examine the effect of segregation on the CS road. Segregated cycle
lane spared a space of the road for cycle use only. It is reported that there are lots of benefits of
segregation. For example, the shift to segregated cycle lane can increase the carrying capacity of
congested streets Aldred et al. (2017). Also, studies from Denmark have shown that segregated
cycle lane reduces cyclists deaths by 35%7. Segregated cycle lanes are far more likely than those
non-segregated ones to encourage people to cycle, especially women.
The characteristic of each road segment can be found at Google map. It not only provides the
recent street view, but also provides the past few years’ photos. With the help of Google map, we
can denote each road segment as segregated or not. We also perform the PSM to inspect the effect
of segregation on cycle accident rate. The result is in Table 12. From Table 12, we can see that

Estimate Std. Error t value Pr(> |t|)
(Intercept) -28.6089 131.5069 -0.2175 0.8284
CS_Seg -58.8391 19.3721 -3.0373 0.0033
accident_rate_pre 0.6367 0.1043 6.1033 4.934e-08
AADT 0.0024 0.0021 1.1437 0.2565
Road.type 96.5759 76.8731 1.2563 0.2131
Population.Density -0.2186 0.4600 -0.4752 0.6360
Employees 0.0116 0.0025 4.5338 2.294e-05
IMD 3.9610 0.8972 4.4145 3.543e-05
bus.density -7.6020 1.9579 -3.8826 0.00022

Table 12: t test of coefficients(CS_seg vs CS_non_seg)

the p−value of "CS_Seg" is nearly 0 and the estimated coefficient is −58.839. This suggests that
the segregated Cycle Superhighways are significantly safer that those without segregation.

4 Conclusions

London Cycle Superhighways are a significant part of the "cycling revolution". In this paper, we
studied the safety effect of Cycle Superhighways. 80 CS segments and 434 control segments were
chosen to analyze. The covariates included annual average daily traffic (AADT), annual average
daily bicycle volume (AADB), previous cycle accidents, population density, employees, index of
multiple deprivation (IMD), and bus density. We implemented the propensity score matching and
panel outcome regression with fixed effects to estimate the safety effect. Both of the methods
showed that the installation of Cycle Superhighways has no significant effect on the cycle accident
rate. However, they both indicated that the Cycle Superhighways significantly increased the cycle
flow volume and the number of cycle accidents.
Then, we studied the heterogeneity of different Cycle Superhighways and found that CS5 performs
best among these CS routes. CS5 is reported to be the only fully segregated CS. Thus, we next
examined the effect of segregation among CSs. Using propensity score matching, it turned out that
the segregated CS significantly decreased the cycle accident rate compared to those non-segregated
CSs. As a result, in order to improve the safety of Cycle Superhighways, more segregation imple-
mentation should be encouraged.
For further study, one can consider more choices of the covariates. Limited by the data availability,
we only considered AADT, AADB, previous cycle accidents, population density, employees, IMD,
and bus density. One can also include some other plausible variables, e.g. traffic speed, intersection
density.
Also, in this study, we constructed the model based on each "count point". This was because the
dataset we got only had the latitude and longitude information. Thus, we just simply allocated
each accident to its nearest count point. This might lead to some bias. A better choice is to do the
reverse geocoding. That is, to map each coordinate to the corresponding road and construct the
causal model base on each road. Then, each accident takes place exactly on its respective road.
Another possible improvement is to quantify the percentile of segregation for each road segment.
In this paper, we only classified each road segment as segregated or not. To better inspect the

7https://www.trafficchoices.co.uk/traffic-schemes/segregated-cycle-lanes.shtml.
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effect of segregation, one can quantify the percentile of segregation. In this case, the treatment
variable is not binary any more. Instead, it becomes continuous. We would need to construct the
propensity score matching with continuous treatment variable.
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