
1 

 

Using computer vision-enriched discrete choice models to assess the visual 

impact of transport infrastructure renewal projects:  

A case study of the Delft railway zone 
Sander van Cranenburgh1 

Francisco Garrido Valenzuela1 

1CityAI lab, Transport and Logistics Group, Delft University of Technology 

 

Abstract 

a computer vision-enriched discrete choice model to investigate the impact of the redevelopment of the 

Delft railway zone on the visual environment. Using computer vision-enriched discrete choice models, 

we evaluate the changes in the utility levels derived from the visual environment by analysing over 70k 

street-view images from periods before and after the redevelopment of the railway zone in Delft. We 

find evidence that the visual appearance of the railway zone has considerably improved after the 

redevelopment project. This finding highlights the potential of using computer vision-enriched discrete 

choice models to quantitatively evaluate and monitor changes to the visual environment arising from 

new transport infrastructure projects. 
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 Introduction 

Cost-Benefit Analysis (CBA) involves tallying up all costs of a (transport) project and subtracting that 

amount from the total projected benefits of the project. Since the benefits are often not expressed in 

euros, the latter requires a monetisation step to convert these to euros. Some benefits of transport 

projects are comparatively easy to monetise, such as travel time savings. Over the years, an extensive 

practice has been established (Small 2012; Kouwenhoven et al. 2014). Other effects are still more 

challenging to monetise, often because of their abstract or enigmatic nature. One key example of a hard-

to-monetise benefit involves changes to the visual appearance and environment. Transport projects 

often have a major (visual) impact on the landscape. Their visual impact often plays a crucial role in 

the political debate leading to the decision to build new transport infrastructure.  

 

However, the visual impacts of a transport project are typically merely assessed qualitatively. As a 

result, they are not included in either of the indicators of CBA that are decisive in the political process: 

the benefit-cost ratio or the net present value (Annema and Koopmans 2015). This weak position of 

impacts on the visual environment and landscapes, more generally, can lead to poor land-use decisions 

that cause welfare losses which undermine public support. 

 

Recently, Computer Vision-enriched Discrete Choice Models (henceforth: CV-enriched DCMs) have 

been proposed (Van Cranenburgh and Garrido-Valenzuela 2023). This model extends the application 

of discrete choice models towards visual preferences. Van Cranenburgh and Garrido-Valenzuela (2023) 

demonstrate their use in residential location choices – showing how trade-offs are captured between 

monthly cost, travel time and street-level factors, such as openness, building typology and greenness 

(as embedded in images). 

 

This study applies the CV-enriched DCM trained by (Van Cranenburgh and Garrido-Valenzuela 2023) 

to investigate changes to the visual environments resulting from transport infrastructure projects. 
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Specifically, we focus on the Delft railway zone, which was put underground in the period 2014-2015. 

This transformed the visual appearance of the whole railway zone. Using the trained CV-enriched 

DCM, we compute utility levels for over 70k Google street-view images from before and after the 

redevelopment of the railway zone. Thereby, we aim to provide a rigorous quantitative underpinning of 

the benefits to the visual environment arising from the redevelopment of the railway zone. With this 

work, we contribute to the stream of research that capitalises on street-view images as a source of 

information about the urban environment (Naik et al. 2017; Rossetti et al. 2019; Ma et al. 2021; Ramírez 

et al. 2021; Garrido-Valenzuela et al. 2022) 

 

 Methodology 

Our method involves the following four steps. First, we collect street-view images before and after the 

infrastructure renewal in the surroundings of Delft railway station. Second, we apply the CV-enriched 

DCM trained by Van Cranenburgh and Garrido-Valenzuela to the images to produce a utility level per 

image. Third, we aggregate the utilities across spatial hexagons for spatial analysis. Fourth, we analyse 

the changes in aggregate utility levels before and after the infrastructure renewal.    

 

 Delft railway station area and image data collection 

After years of fierce political debate, in the early 2000s, the final decision was made to redevelop the 

railway zone in Delft. A significant part of the project involved putting 2.3km of railway track and the 

train station underground. The main construction period on the railway track took place in 2014 and 

2015. Figure 1 shows the railway station before and after the redevelopment. Much of the debate leading 

up to the commissioning of the project was about whether the improvement in the visual environment 

in the railway zone actually would exceed the considerable construction costs. Because of the significant 

financial burden the project turned out to be, even today, the project's benefits are debated. 

 

  
Figure 1: Delft Railway station before (left) and after (right) redevelopment 

 

To collect street-view images in the Delft railway zone, we created a grid of points with 25-metre 

spacing in an 800m circumference around the city centre. We retrieved the nearest street-view image id 

for each point on the grid using Google's street-view API. If multiple years were available, we collected 

images of all available years. Each street-view image id corresponds to a 360-degree panorama view at 

the street level. Finally, from each panorama, we generated two image urls with 90-degree angles to the 

direction of the street. This latter ensures the images are side-views (e.g., as opposed to views parallel 

to the driving direction of the Google car). All street-view images are (temporally) stored using png 

format with 900 x 600 pixels and 8 bits per colour channel (implying 16.7m colour values per pixel). 

For each image, the geo-location, year and month are stored. Figure 2 shows the collected number of 

street-view urls per year. 
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Figure 2: Number of street-view images per year 

 

 Computer vision-enriched discrete choice models 

To obtain the utility levels of each image, we apply the CV-enriched DCM trained by Van Cranenburgh 

and Garrido-Valenzuela (2023) on residential location choice data. This model assumes decision-

makers, denoted n, make decisions based on Random Utility Maximising (RUM) principles (McFadden 

1974). Equation 1 shows the utility function of this model we use. As can be seen, in this model, the 

utility, Uj, is derived from the numeric attributes Xj and attributes embedded in the street-view images 

Sj, which were presented as part of the alternatives. Furthermore, the account for the possibility that 

images taken, e.g. in spring look, on average, more attractive than images taken in winter, a constant 

per month is included in the utility function (the second term from the left), where ISj is a binary vector 

with value one if the image is taken in month mo, and zero otherwise.  

 

Figure 3 shows a screenshot of the stated choice data on which the CV-enriched DCM is trained. In this 

experiment, respondents had to make trade-offs between street views (visual appearance of the 

neighbourhood) and two numeric attributes: monthly housing cost and commute travel time. The street-

view images shown to respondents in choice tasks were randomly drawn from an extensive database of 

street-view image ids. Based on these data, the CV-enriched DCM could learn the preferences over 

elements embedded in the street-view images, such as compactness, openness, street topology, parking 

facilities, etc. For more details about the data collection and the CV-enriched DCM, see Van 

Cranenburgh and Garrido-Valenzuela (2023). 
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Figure 3: Screenshot of stated choice experiment used to train the CV-enriched DCM 

 

Importantly, in Equation 1, φ is a mapping function – performed by the computer vision part of the 

model: DeiT base (Touvron et al. 2021) – which maps image Sj onto a lower dimensional feature space, 

denoted Zj (which has a dimensionality of 1 x K). The feature map of an image embeds the relevant 

information from that image that generates (dis)utility and, in turn, maps linearly map onto the utility. 

wk denotes the weight associated with the kth feature of Zj; βm denotes the marginal utility associated 

with attribute m, and xjmn denotes the attribute level of numeric attribute m of alternative j, as faced by 

decision-maker n. 
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Equation 1 

 

In this application of the model, we are solely interested in the utility it produces from images. In other 

words, to deploy this model, we first apply the mapping function φ to images to obtain feature maps Z. 

In turn, we take the inner product with w to get the utility of the image. Finally, we 'correct' the utility 

of each image for the month of the year in which the image was taken (the second term of Equation 1). 

Figure 4 kernel density plots of the utility levels computed from the images (before and after the renewal 

project). The left-hand side plot shows utility levels uncorrected for the month of the year; the right-

hand side plot shows utility levels corrected for the month of the year. 
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Figure 4: Kernel density plots of utility levels before and after the renewal project.  

 

 Aggregation 

To investigate the potential changes in utility levels arising from the changes in the visual environment 

arising from the infrastructure project, we must define a spatial unit of analysis. For this purpose, we 

use regular hexagonal cells with 25-metre sides to tessellate the entire study area. Accordingly, on 

average, each hexagon contains 20 images from the period before and 15 images from the period after 

the redevelopment.  

 

 Preliminary results 

Figure 5 shows the main results of this study. The hexagon's colour depicts how the utility level changed 

between the periods before and after the redevelopment of the railway zone. A green colour indicates a 

positive change in the average utility derived from the images within the hexagon; a red colour indicates 

a negative change in the average utility. The map shows an area of approximately 2 x 2 km. Delft has 

two landmark churches, which are depicted to ease navigation.  

 

Based on Figure 5, we make a number of observations. Firstly, the visual appearance of the redeveloped 

area has considerably improved. Almost all hexagons within the red encircled area are greenish, 

implying a positive change in utility. This is in line with behavioural intuition. It also suggests that CV-

enriched DCMs can indeed be used to evaluate changes in the visual environment. Secondly, the visual 

appearance of the area west of the redeveloped railway zone has also improved. Again, we see 

predominantly green hexagons. A possible explanation for this observation is that the redeveloped 

railway zone radiated positively in this direction and led to positive changes to the visual environment. 

Thirdly, the change in the visual appearance of the inner city (located Nord-East of the train station) is 

mixed. Some streets seem to have deteriorated (coloured orange and red), while others show positive 

changes in their visual appearance (coloured green). Presumably, local explanations can be found 

explaining these changes.   
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Figure 5: Changes in utility levels Delft. The railway zone is encircled in red.  

 

 Conclusion and discussion 

This research has employed new computer vision-enriched discrete choice models to investigate 

changes in the visual environment arising from the redevelopment of the Delft railway station zone. 

The intuitively correct results we obtained from our case study suggest that CV-enriched DCMs can 

indeed be used to evaluate changes in the visual environment. 

 

A key limitation is this research is that the utilities extracted from the CV-enriched DCM reflect the 

attractiveness as a residential location. But, the function of the railway station zone is mixed. Its 

functions include housing, transfer, gathering, working, eating, etc. In this research, we only looked at 

the visual environment from the lens of residential location. 

 

Next steps 

We envision taking the following steps in the coming months. Firstly, we would like to expand our 

study areas. We want to apply the approach to other areas that undergo renewal to establish its 

robustness and further applicability. In addition, we aim to develop a better grasp of optimal hexagon 

size in combination with data availability (Wong 2004). Finally, we aim to show what the trained CV-

enriched DCM has learned. We want to understand what causes exceptionally high or low utility 

predictions. Such model explanations may help to better inform urban planners and policymakers on 

future transport infrastructure projects.  
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