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Short summary

Collision warnings play a crucial role in preventing crashes based on estimating the critical time to
potential accidents. Existing research and applications mainly focus on longitudinal vehicle inter-
action and headway keeping on highways. However, urban driving with frequent lateral interaction
may have different critical time to collision. This study considers both longitudinal and lateral
interaction through a two-dimensional spacing measure, driver space, to estimate the average crit-
ical time for drivers to respond to a potential collision. With the average spacing between vehicles
at different levels of discomfort and in different relative speeds, we estimate the critical time via
linear regression. Our experiments on two trajectory datasets find that drivers are more alert to
collision dangers on highways compared to urban intersections, and drivers respond to potential
collisions more quickly during lateral interaction than longitudinal. These findings emphasise the
need of tailored collision warning systems for further improving road safety.
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1 Introduction

Autonomous driving and advanced driving assistance systems (ADAS) have been a rapidly evolving
research area, aiming to enhance road safety and efficiency. As part of that, forward collision
warning and collision avoidance systems play a critical role in preventing crashes. These systems
distinguish emergencies based on the critical time to collision, which refers to the amount of time
a vehicle has to respond to a potential collision.

Critical time to collision has been typically considered in car following scenarios for longitudinal
interaction between vehicles (Bella & Russo, 2011; Tawfeek & El-Basyouny, 2018). As an example,
Time to Collision (TTC) is one of the most effective and broadly used indicators for warning rear-
end collisions (Lu et al., 2021). It is calculated based on the relative position and relative velocity
between two approaching vehicles, assuming that their movement continue without change. Then
a critical threshold (denoted as TTC*) is set to distinguish un(safe) situations. ADAS usually set
a fixed threshold, but some studies found that TTC* can vary among drivers (Kusano et al., 2015)
and in different traffic environments (Arun et al., 2021) due to different human perception.

As the number of ADAS-equipped vehicles increases in urban areas, there is a growing need to
consider critical time to collision in a wider range of driving scenarios. In urban traffic, the
interaction between vehicles involves more angled movement such as lane changing and turning
(Zhao et al., 2020). This entails potential collisions beyond rear-end crashes, such as head-on and
side-swipe accidents (Theofilatos et al., 2012).

Does human perception of collision danger differ on highways and in urban traffic, with or without
lateral interaction? This study addresses the question from the perspective of driver space. Driver
space measures two-dimensional spacing between vehicles. Our previous study (Jiao et al., 2022)
presented a method to quantify the 2d spacing in a probabilistic manner, which is based on the
accumulative presence of vehicles. The method can locate a set of boundaries of spacing in various
driving scenarios, with which we can estimate the average critical time to collision given the relative
speed between vehicles.

In the following sections, we will firstly introduce our methods in Section 2. Then we apply the
methods to two trajectory datasets collected by drones in the U.S. One is over an expressway and
the other is over an intersection. The results and discussion will be presented in Section 3. Section
4 will conclude the study. Our findings are expected to aid the development of collision warning
systems.

2 Methodology

This section will at first briefly explain driver space and its quantification. Then we will introduce
how to obtain comfortable and uncomfortable spacing from the quantification. Finally, we will
present how this study estimates critical time to collision.

Driver space and its quantification

The driver space of a vehicle refers to a set of boundaries where the driver experiences different
levels of discomfort. When the driver space is intruded (i.e., when two vehicles are close enough),
discomfort is raised. This discomfort motivates the drivers to maintain a proper distance from
each other.

We use formula (1) to quantify the varying levels of discomfort caused by driver space intrusion
into a value between 0 and 1. The higher the p(x, y), the more discomfort is caused. For two
vehicles i and j, x and y are transformed coordinates of j in a system where i is at the origin and
the y-axis points to the direction of their relative velocity.

p(x, y|θ) = exp

(
−
∣∣∣∣ xrx
∣∣∣∣βx

−
∣∣∣∣ yry
∣∣∣∣βy
)
, (1)
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where each of θ = (rx, ry, βx, βy)
⊤ has two components:

θ =
1 + sgn(x)

2
θ+ +

1− sgn(x)
2

θ− for θ = rx, βx,

θ =
1 + sgn(y)

2
θ+ +

1− sgn(y)
2

θ− for θ = ry, βy.

(2)

Formula (1) is adapted from the density function of the generalised Gaussian distribution. We use
it to parameterise the comfort-discomfort transition during approaching. Among the parameters in
formulae (2), r = {r+x , r−x , r+y , r−y } determine driver space boundaries in different directions, where
p = e−1; and β = {β+

x , β−
x , β+

y , β−
y } determine how fast comfort changes to discomfort across the

boundaries in different directions.

Driver space, i.e., two-dimensional vehicle spacing, can vary in different scenarios. Correspondingly,
given samples of vehicles in various scenarios, θ can also be different. The inference of θ is achieved
by estimating the density of the accumulative presence of vehicle pairs. In each pair, one of them is
considered as an ego vehicle and the other is a surrounding vehicle. By aggregating all pairs in the
same scenario, an average ego vehicle is abstracted, and driver space is shaped by the surrounding
vehicles. In our previous research, we developed a method that makes consistent inference of driver
space. The readers are referred to Jiao et al. (2022) for technical details.

Spacing between approaching vehicles

Driver space reflects the average preference of drivers’ spacing behaviour. This includes spacing
when vehicles are approaching each other and leaving away. As collision is mainly a result of
getting overly close, we only take approaching spacing into account.

As stated above, our quantification of driver space transforms vehicle coordinates. The transfor-
mation aligns the y-axis in the target coordinate system to the direction of the relative velocity
between two interacting vehicles. This ensures the independence of x and y. For two vehicles
approaching each other, the transformed y will be larger than 0. In formula (2), r and β define
where the intrusion discomfort increases most quickly and how quickly the increase is. Therefore,
among the parameters, r+y and β+

y characterise the spacing between vehicles that are approaching
each other.

With the inferred r+y and β+
y in various scenarios, we can correspondingly estimate the spacing

between approaching vehicles under different extent of discomfort. Given a certain extent of
discomfort indicated by p, the approaching spacing s(p) can be computed by solving the inverse
of equation (1). As x and y are independent from each other, s(p) is solved as

s(p) = r̂+y (− ln(p))1/β̂
+
y . (3)

For vehicle samples in different situations and at different relative speeds, approaching spacing can
be computed correspondingly, and then we can estimate the critical time to collision.

Critical time to collision

Our quantification of driver space is based on the assumed negative correlation between the presence
of vehicles and the extent of discomfort. During the approaching between vehicles, drivers can feel
increasing discomfort, and this increase is assumed to be fastest when p = e−1. When p is close to
0, drivers are comfortable with other vehicles’ presence. When p is close to 1, the vehicles are so
close that a collision is imminent.

In this study, we consider two kinds of critical time. One is the time from comfort to collision, the
other is the time from discomfort to collision. The former represents the time from when a driver
starts to feel discomfort due to approaching to a potential collision, and the latter represents the
time from when a driver experiences clear discomfort and seeks for change to a potential collision.

We firstly consider spacing from comfort to collision as sc = s(p = 0.1) and spacing from discomfort
to collision as sd = s(p = e−1). Generally denote a series of spacing under different relative speeds
v as s. For each relative speed condition v, there is a corresponding s. Given the linear physical
relationship between speed and distance, we assume that s and v are linearly correlated as equation
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(4) and the coefficient t∗ is the critical time.

s = s0 + vt∗ + ϵ, (4)

where s0 is the spacing when vehicles are relative static, and ϵ is the random error that satisfies
E(ϵ) = 0.

We then use least squares fitting to estimate ŝ0 and t̂∗. The unbiased estimation of them are solved
as equations (5).  t̂∗ =

∑n
i=1(vi − v)(si − s)∑n

i=1(vi − v)2
,

ŝ0 = s− vt̂∗.

(5)

In addition, the variance of t̂∗ can also be estimated as shown in equation (6)

V (t̂∗) =
V (ϵ)∑n

i=1(vi − v)2
=

V (s)∑n
i=1(vi − v)2

. (6)

In this way, based on sc and sd, respectively, we can estimate the critical time from comfort to
collision, denoted as t̂∗c , and the critical time from discomfort to collision, denoted as t̂∗d.

3 Results and discussion

Datasets

We apply the proposed approach to two trajectory datasets. Both of them are collected in the
U.S., of which the videos of vehicle movement were recorded by drones, and then computer vision
algorithms were used to process the videos into numerical coordinates. As shown in Figure 1, one
of them is a weaving segment of an expressway marked with A (Zheng et al., 2022), where 9,956
vehicles in 1.44 hours were recorded; and the other is an intersection denoted as GL (Zhan et
al., 2019), where 10,510 vehicles in 4.34 hours were recorded. This study considers vehicle-vehicle
interaction only, so pedestrians and cyclists in the intersection GL are excluded.

Figure 1. Two road segments that are analysed. (a) and (b) are respectively reused from Figure
8 in Zheng et al. (2022) and Fig.2 in Zhan et al. (2019).

We consider lateral interaction at the intersection GL. If the angle between the moving directions of
the two vehicles in a pair is smaller than 15 degrees or larger than 165 degrees, they are considered
to interact only in the longitudinal direction (i.e., car following); otherwise, their interaction is
considered to also involve the lateral direction (e.g., lane-changing and turning). In this way, our
analysis considers three situations: interaction in the expressway, longitudinal interaction at the
intersection, and lateral interaction at the intersection. They are referred to as Expressway A,
Non-lateral GL, and With-lateral GL in the following.

Inferred driver space

We first sample vehicle pairs present at the same frame, and then infer the driver spaces that they
accumulatively shape in different scenarios. Figure 2 shows several inference results. Driver spaces
in different situations and under 2, 4, 6, 8, 10 m/s of the relative speed are drawn. In each subplot,
the yellow dots indicate surrounding vehicle positions, and the driver spaces that they shape are
plotted as contours at different levels of intrusion discomfort.
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Figure 2. Inferred driver space in different scenarios. E: Expressway A; N: Non-lateral GL; L:
With-lateral GL.

Figure 2 provides an intuitive impression of how drivers maintain distance in various scenarios.
Driver space expands as the relative speed between the vehicles increases. While at the same
relative speed, the average driver space is largest on the expressway, followed by that formed
by vehicles at the intersection during non-lateral interaction, and the driver space formed during
lateral interaction is the smallest.

The difference in driver space in different scenarios imply that drivers perceive and react differently
during interaction. For instance, when two vehicles are moving in the same direction on the
expressway at a similar relative speed, they maintain a larger spacing compared to when they are
driving at the intersection with non-lateral interaction. In the former case, drivers tend to be more
cautious and distant from each other. Similarly, if the two vehicles were to encounter each other
during a lateral interaction (i.e., they are in angled directions but the relative speed value is still
similar), their spacing would be even smaller. Such differences reflect drivers’ different perception
about the approaching between each other, which results in different reaction.

Estimated critical time to collision

In the three situations of Expressway A, Non-Lateral GL, and With-lateral GL, we compute the
spacing at various relative speeds and then estimate the corresponding critical time to collision.
The results are presented in Figure 3. Each column in this figure represents a specific situation.
The upper plot in each column displays the computed spacing, and the bottom plot displays the
estimated time and its variance.

Figure 3. Average spacing and estimated critical time to collision in different situations.

The red lines indicate the estimated critical time from discomfort to collision t̂∗d. Our results show
that this value is 3.98s on the expressway A, but reduces to 2.40s at the intersection GL during
non-lateral interaction and to 2.84s during lateral interaction. This estimated time represents the
duration that a driver realises the danger before a potential collision. A higher value means that
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the driver perceive the potential danger earlier. Therefore, the results suggest that drivers tend to
perceive potential collisions more quickly when they drive on the expressway than when they drive
at the intersection. This makes sense as the traffic environment on highways is generally simpler
than in urban areas, so that a potential collision is more predictable.

The difference between the blue lines and the red lines (i.e., t̂∗c − t̂∗d) indicates the estimated
time from when a driver begins to feel discomfort to when the driver feels clear discomfort that
motivates behaviour change. This time difference reflects how quickly the driver responds to a
potential collision. Our results show that drivers respond most quickly when they drive at the
intersection during lateral interaction, with a time difference of 0.73s. However, during non-lateral
interaction, the time difference is 1.19s at the intersection and 1.59s on the expressway. This could
be due to that lateral interaction typically takes place in a closer distance, which requires faster
response of drivers. Corroborating support can be seen from the spacing plots, where the spacing
from comfort to discomfort is larger for longitudinal interaction than for lateral interaction.

4 Conclusions

This study offers a driver space perspective to analyse the critical time to collision and the issuing
of collision warning. Firstly the averaged two-dimensional spacing of drivers in different situations
is quantified based on the accumulative presence of vehicles. Then we use least squares to estimate
the critical time to collision by fitting the linear relationship between the approaching spacing and
the corresponding relative speeds. We analysed three situations in this study, including highway
interaction, longitudinal interaction at an intersection, and lateral interaction at the same inter-
section. Our results show that drivers may take different amount of time to perceive and react to
a potential collision in different situations. Specifically, drivers perceive the danger of a potential
collision sooner on highways than at urban intersections, which implies that they are more sen-
sitive to potential collision when driving on highways. Meanwhile, drivers take quicker reaction
during lateral interaction than longitudinal interaction. These results suggest that collision warn-
ing systems need to be tailored to specific driving situations, with a greater warning sensitivity on
highways and a proper time design to avoid distracting drivers’ proactive reaction. By accounting
for the variation of driving situations and interactions, drivers can get more reliable reminders and
the road safety can be improved for all road users.

In the next step, we will apply the approach to more intersection situations. Figure 3 shows two
thresholds for the situation of With-Lateral GL. The lower threshold is seen when the relative
speed is smaller than around 10 m/s, and the higher one appears when the relative speed is larger.
This implies that, during lateral interaction, drivers may have even slower awareness of potential
collisions if their speed difference is smaller. Such implication poses a concern as the delayed
awareness may result in inadequate reaction time to avoid potential collisions. Therefore, we still
need to examine whether this phenomenon is common across different intersections and to explore
the underlying causes.

This study contributes to the growing research field on ADAS and autonomous driving by extending
the scope of critical time to collision to a wider range of driving scenarios, beyond car-following
that is typically focused. However, it is important to note that the critical time to collision is just
one aspect of safe driving. Other factors, such as vehicle-to-vehicle communication, pedestrian and
bicycle safety, and the ability to detect and respond to unexpected situations on the road, also
need to be considered in developing more advanced collision avoidance systems.
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