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SHORT SUMMARY 

We develop a novel cell-based two-stage stochastic program to address spatial, dynamic and sto-

chastic features of traffic flow for adaptive signal control. Cell transmission model (CTM) is em-

ployed to capture the dynamic feature of traffic flow, with certain CTM cells designated as detec-

tor cells to capture real-time spatial queuing effects. We formulate a two-stage stochastic program 

to address uncertain demand for signal control. In stage 1, a base timing plan (BTP) is determined 

as the long-term default plan. In stage 2, cycle-based adaptive policies, i.e., green extension/cut-

off based on the BTP, are implemented according to the detector cell states. We develop a spe-

cialised GA algorithm to search for the optimal BTP and adaptive policies. A case study of Tai 

Tam reservoir is conducted to elaborate the property of the proposed approach. The adaptive con-

trol plan can have 17% delay reduction compared to the optimal fixed-time plan. 
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1. INTRODUCTION 

To develop a demand-responsive traffic signal control system, traffic detectors play a vital role in 

collecting traffic information for making signal control decisions. For vehicle actuated signal con-

trol, detectors are deployed near the stop lines of all or some of the junction approaches. Accord-

ing to the vehicle detection information, the green times of certain stages are extended or cut off. 

The question of how long the green time ought to be extended or cut off is not addressed explicitly. 

The extension/cut-off durations are generally determined according to traffic engineer experi-

ences in practice. Urban traffic control (UTC) signal control system generally produces fixed-

time plans for each identified traffic pattern based on detector information. Appropriate timing 

plans are selected by the time of day, day of the week, or special event situations. Once selected, 

the fixed-time plan is implemented for that period. Albeit detectors provide seconds/minutes level 

sensing data, the traffic variations within the period are neglected. For adaptive signal control 

systems, such as SCOOT (Robertson and Bretherton, 1991), detectors are deployed at the entry 

to the network links to predict the time and shape of the flow profiles at the stop line. Optimal 

signal timing variables are calculated with the incremental change algorithm. The optimality of 

the signal timing plans may be hampered by the restricted computational time budget. Because of 

platoon dispersion and lane changing effects, the estimated flow profiles are likely biased toward 

the arrival patterns at the stop line. In this paper, we utilize the vehicle detection data from first 

principles and incorporate dynamic detector status information into a mathematical model to de-

rive the optimal adaptive control policies.  

 

Our study aims to address three characteristics of traffic flow, i.e., spatial, dynamic, and stochas-

tic, for adaptive signal control. To capture spatial and dynamic features, we adopt the cell trans-

mission model (CTM) (Daganzo, 1994) as the underlying traffic flow model. Certain cells in the 

CTM network are selected as the detector cells. Cell occupancy information is collected to 
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indicate queue presence status at the detector locations. To capture the stochastic traffic demand 

feature, we adopt a two-stage stochastic program method. In stage 1, a base timing plan, including 

cycle time, base green time, and offset, is determined as the long-term default plan or ‘fallback’ 

plan. In stage 2, upon the traffic demand realization scenarios, cycle-based adaptive control poli-

cies are determined to address residual queues. At the end of each signal cycle, adaptive policies 

are selected according to the status of the detector cells. Each detector status pattern corresponds 

to a certain adaptive policy. The selected adaptive policy will be implemented in the next cycle. 

We develop a specialized GA algorithm to determine the optimal base timing plan and adaptive 

policies. A case study at Tai Tam reservoir is provided to indicate the properties of the proposed 

adaptive signal control method. 

2. METHODOLOGY 

signal control in CTM 

As shown in (1), the green start time , ,i j zS  of phase-1 (i=1) is equal to the initial offset ini

jO  at 

junction j plus the lost time L plus the zth cycle start time ( 1)z C−  . For other phases (i>1), the 

green start time , ,i j zS  is equal to the lost time L plus the green end time of the predecessor phase

1, ,i j zE − , as shown in (2). The green end time , ,i j zE  is equal to the green start time , ,i j zS  plus the 

green duration ,i jG , as shown in (3). The signal effects can be captured in CTM by adjusting the 

inflow capacity of the signal cells (M1) according to the state of signal light. In (4), when the time 

step t is between , ,i j zS  and , ,i j zE  (in green), the inflow capacity of the signal cell, i.e., 
,1( )mQ t , is 

set to be the saturation flow rate s; otherwise 
,1( )mQ t  equals zero. 

 

, , ( 1) , 1, , ,ini

i j z jS O L z C i j z= + + −  =   (1) 

, , 1, , , 1, , ,i j z i j zS L E i j z−= +    (2) 

, , , , , , , , ,i j z i j z i jE S G i j z= +   (3) 

, , , ,

,1 1

,    
( ) , , , , .

0,  

i j z i j z

m

s S t E
Q t i j z m M

otherwise

 
=  


 
(4) 

detector cell settings 

We designate certain CTM cells as detector cells to mimic real-time traffic detector deployment. 

Adaptive signal control policies are triggered based on detector states. We employ indicator func-

tions in (5) to represent whether the state of a detector is active or inactive. Denote , ( )i jd t  as the 

state of detector cell at time t for phase i, junction j. Denote set ' '

,{ ( ), , }t i jd t i I j J=    Φ  as 

the set that includes all the detector cell states in the target network. 'I  is the phase set, for which 

phase detectors are deployed. 'J is the junction set, for which junction detectors are deployed. In 

(5), if the occupancy of detector cell ijd
c  is greater than or equal to the critical occupancy f  at 

time t, , ( ) 1i jd t = ; otherwise, , ( ) 0i jd t = . (5) can be applied to represent queue presence detection. 

For instance, if the occupancy of detector cell is full or almost full, e.g., 0.9f  , vehicle queue 

is regarded as reaching to the detector location.  
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 (5) 

two-stage signal control formulation 

With the CTM model embedded, we formulate a cell-based two-stage stochastic program to op-

timize the traffic signal control plan (Li et al., 2018; Li et al., 2021). In stage 1, the expected total 

delay [ ( , , )]b iniD CE G O  is minimized with respect to the base timing plan, i.e.,  , ,b iniC G O , 

shown in (6). It is subject to CTM dynamics constraints. (7)-(10) are constraints for signal control 

variables. 

 

In stage 2, given the base timing plan  , ,b iniC G O  from stage 1, adaptive policies, G , hence, 

the actual green time a
G , are determined to minimize the total delay kD  upon the realization of 

traffic demand ˆ
kv  in scenario k, as shown in (11). G is the set that includes all the adaptive 

policies, i.e.,
,{{ , , }, }c

i jG i I j J c =      G . 
,

c

i jG is the adaptive policy c for phase i at junc-

tion j. Denote Λ  as the set that includes all the detector state combinations, i.e.,
' '

,{{ , , }, }c

i jd i I j J c=     Λ . 
,

c

i jd is the state of detector (either 1 or 0, as shown in (5)) for 

adaptive policy c for phase i at junction j. Each adaptive policy c corresponds to a specific detector 

state combination, i.e., ( ) ( )c c →G Λ . For adaptive policy c, the summation of cG  over all 

phases for junction j should be zero to maintain the common cycle time, as shown in (12). The 

adaptive policy cG  is selected according to the state of detector cells Φ . If the detector state 

combinations for adaptive policy c, i.e., ( )cΛ , are the same as the state of detector cells, i.e., 

( )c =Λ Φ , indicator function 1 ( ( ))cΦ Λ  returns 1, as shown in (13); otherwise,1 ( ( )) 0c =Φ Λ . In 

(14), the actual green time 
,

a

i jG  for phase i junction j equals the base green time 
,

b

i jG  plus the 

selected adaptive policy 
,

c

i jG . (15) is the range of actual green time. (16) is the actual green end 

time constraint. 

(Stage 1:) 

, ,

ˆ ˆ [ ( , , )] ( ) ( , , , )
b ini

b ini b ini

k k k k
C

k

min D C P D CE



= 
G O

G O v G O v  (6) 

  

subject to CTM dynamics constraints and (1)-(4), and 

,( ) ,  ,b

i j

i

G L C j+ =   
(7) 

, , , ,  ,  ,min b max

i j i j i jG G G i j    (8) 

,min maxC C C   (9) 

,0 ,  ,ini ini max

j jO O j    (10) 

where ˆ( , , , )b ini

k kD C G O v  is the total delay value in demand scenario k in stage-2. 

(Stage 2:) 

,
,

ˆ ( , | ) ( )
a

a

k k l k

l t

min D d t


 =
G G

G G v    (11) 

    subject to CTM dynamics constraints and (1)-(2), (4)-(5) and 



4 

 

, 0, ,c

i j

i

G j c =   (12) 

1,  ( )
1 ( ( )) , , ;

0,  ( )

t

t

c
c t n C n

c

=
= =  


Φ

Λ Φ
Λ

Λ Φ
 

(13) 

, , ,1 ( ( )) , ,a b c

i j i j i j

c

G G c G i j= +   Λ  (14) 

, , , ,  ,  ,min a max

i j i j i jG G G i j    (15) 

, , , , , , , ,a

i j z i j z i jE S G i j z= +   (16) 

 

The optimal total delay kD  in stage 2 is accrued into the objective function to obtain the expected 

total delay [ ( , , )]b iniD CE G O . As shown in (6), the expected total delay [ ( , , )]b iniD CE G O  

equals the summation of the total delay over each demand scenario k ( k ).  is the space of 

the realizations of demand scenario. ˆ( )k kP v  is the probability of scenario k for which the realized 

demand is ˆ
kv . We assume a finite number of demand scenarios sampled in space   and the sum-

mation of probability kP  equals 1, i.e., 1k

k

P


= . The whole optimization problem is to determine 

the optimal solutions for the base timing plan in stage 1 and the set of adaptive policies in stage 

2, which will minimize the expected total delay under stochastic demand condition. 

solution algorithm 

In this study, we develop a specialised solution approach based on genetic algorithm (GA) to 

solve the proposed adaptive signal control problem. We have introduced GA into solving signal 

control optimisation problem and elaborated the effectiveness of GA in generating quasi-optimal 

signal control solutions (Lo et al., 2001; Lo and Chow, 2004). In GA, signal control variables are 

transformed into 0-1 binary representations. The duration of each variable is coded as a series of 

chromosomes. An example of the gene structure of the cycle-based two-stage signal control is 

shown in Figure 1. The head part is the common cycle time for the junctions in the network, 

following with the control variables of each junction. Junction control variables consists of the 

base timing plan (including initial offset ini

jO , base green time 
,

b

i jG ) and adaptive policies 
,

a

i jG . 

The actual green time a
G  is coded as the adaptive decision variables in the gene since the range 

of G  includes negative domain which is not operable in GA. The population of genes are ma-

nipulated with three operators, i.e., reproduction, crossover, mutation, to search for optimal signal 

control solutions. The gene (signal plans) with the best delay performance will be selected as the 

optimal solution. 
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Figure 1. Gene structure of the cycle-based two-stage signal control 

3. RESULTS AND DISCUSSION  

We select Tai Tam reservoir as the test site to illustrate the performance of the proposed adaptive 

signal control method. Tai Tam reservoir road is a section of Tai Tam road located at eastern 
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Hong Kong Island, which is a bi-directional two-lane road connecting Stanley and Chai Wan, as 

shown in Figure 2. Since the construction of the reservoir was completed in 1918, the width of 

the road is too narrow to accommodate bi-directional traffic passing through the reservoir simul-

taneously. A two-phase signal is deployed on the reservoir. Only one direction of traffic is allowed 

going through per phase. The vehicle clearance time (all red time) of 45 seconds is set for every 

phase switch. Due to the long all red time, frequent phase switches may incur severe delay dete-

rioration. The key question is how to effectively assign green time of the two phases so that the 

total delay is minimised under uneven traffic arrivals of the two directions. We apply the data set 

collected in three days (June, 2019) for signal optimisation. The data set of each day includes 

three-hour PM peak bi-direction traffic arrivals to the Tai Tam reservoir. We code the CTM net-

work for Tai Tam reservoir as shown in Figure 2. The parameters of the CTM network are cali-

brated with the real data.  

 

We assign northbound traffic (to Chai Wan) to phase 1 and southbound traffic (to Stanley) to 

phase 2. The minimum phase duration is 60 seconds. We first optimise an optimal fixed-time plan 

for the reservoir via the conventional GA (the gene structure without the adaptive policy chromo-

somes). The optimisation is performed on Intel i7-3370 computer with 32GB RAM. The param-

eters of the GA include 10 generations, 100 population size. The expected total delay over three 

demand scenarios is minimised with respect to signal control variables. The optimal fixed-time 

signal plan is listed in Table 1. 

 

Figure 2. Tai Tam reservoir 

Table 1. fixed-time signal plan 

 Cycle time (s) Offset (s) Phase 1 (s) Phase 2 (s) 

duration 180 130 97 83 

 

For the queue-based adaptive signal control. We deploy three detector cells on each side of the 

reservoir approaches as shown in Figure 2, (The detector cell ID are marked). The locations of 

the detector cells are 0 m, 100 m, 200 m, respectively, from the stop lines for both sides. If vehicle 

queue end is detected at the detector cells (cell occupancy > 90%), the detector state turns 1; 0 

otherwise. We adopt the proposed specialised GA algorithm to optimise both the base timing plan 

in stage 1 and the adaptive control policies in stage 2. Since we deploy six detectors for Tai Tam 

case, there are 62 64=  detector state combinations, hence, 64 adaptive policies for adaptive sig-

nal control. Table 2 lists all the adaptive polices and the corresponding detector patterns. Detector 
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patterns are counted during the GA simulations. Detector pattern ‘100100’ (policy 37) is the most 

frequently activated pattern which is counted 50435 times in the simulations. ‘100100’ means that 

at the end of signal cycle, i.e., end of phase 2, vehicle queues are detected at detector 1 and detec-

tor 4 (close to the stop lines), but not at the other detectors. It is noted that only 12 detector patterns 

are activated and the rest of the detector patterns are never activated. Those non-critical adaptive 

policies can be eliminated from the gene structure. We further optimise the top 9 frequently acti-

vated adaptive policies and the base timing plan via GA. Whenever the detector states not in-

cluded in the top 9 adaptive policies appear, the base plan will be implemented in the next cycle. 

The top 9 adaptive policies and the base plan are listed in Table 3. 

 

The base green times are 89 seconds for phase 1 and 91 seconds for phase 2. For pattern ‘100100’ 

(policy 37), it indicates that there is overflow at the SB approach at the end of phase 2 and vehicle 

queue at the NB approach. The adaptive plan is to extend 4 sec green time for phase 1 and cut off 

4 sec for phase 2 in the next cycle. For pattern ‘111000’ (policy 57), long queue is detected at the 

NB approach but no queue at the SB approach. The adaptive plan is to extend 27 sec green time 

for phase 1 to clear the long queue. For pattern ‘100110’ (policy 39), a long residual queue is 

detected at the end of phase 2. The adaptive plan is to cut off 10 sec green time from phase 1 and 

extend 10 sec green time for phase 2. The average delay results are listed in Table 4. The average 

delay of the optimal fixed-time plan is 105 sec/veh. The adaptive plan (86.5 sce/veh) can have a 

further 17.6% delay reduction compared to the optimal fixed-time plan. Even though some of the 

adaptive policies are eliminated from the GA optimisation and only top 9 adaptive policies are 

optimised, the adaptive plans can still have 17.0% delay improvement, which does not deteriorate 

too much compared to the full policy adaptive plans. 

Table 2. adaptive policies and the corresponding detector patterns 

adaptive policy 

c 

detector patterns 

‘123456’ 

activated patterns 

counts 

adaptive policy 

c 

detector patterns 

‘123456’ 

activated patterns 

counts 

1 '000000' 1493 33 '100000' 34308 

2 '000001' 0 34 '100001' 0 

3 '000010' 0 35 '100010' 0 

4 '000011' 0 36 '100011' 0 

5 '000100' 1089 37 '100100' 50435 

6 '000101' 0 38 '100101' 0 

7 '000110' 59 39 '100110' 1786 

8 '000111' 0 40 '100111' 0 

9 '001000' 0 41 '101000' 0 

10 '001001' 0 42 '101001' 0 

11 '001010' 0 43 '101010' 0 

12 '001011' 0 44 '101011' 0 

13 '001100' 0 45 '101100' 0 

14 '001101' 0 46 '101101' 0 

15 '001110' 0 47 '101110' 0 

16 '001111' 0 48 '101111' 0 

17 '010000' 0 49 '110000' 15172 

18 '010001' 0 50 '110001' 0 

19 '010010' 0 51 '110010' 0 

20 '010011' 0 52 '110011' 0 

21 '010100' 0 53 '110100' 27584 

22 '010101' 0 54 '110101' 0 

23 '010110' 0 55 '110110' 3099 

24 '010111' 0 56 '110111' 0 
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25 '011000' 0 57 '111000' 22707 

26 '011001' 0 58 '111001' 0 

27 '011010' 0 59 '111010' 0 

28 '011011' 0 60 '111011' 0 

29 '011100' 0 61 '111100' 20344 

30 '011101' 0 62 '111101' 0 

31 '011110' 0 63 '111110' 9520 

32 '011111' 0 64 '111111' 0 

Table 3. optimal base timing plan and adaptive signal plans 

adaptive 

policy c 

detector patterns 

‘123456’ 
Phase-1 (sec) ∆G1 Phase-2 (sec) ∆G2 

37 ‘100100’ 93 4 87 -4 

33 ‘100000’ 96 7 84 -7 

53 ‘110100’ 93 4 87 -4 

57 ‘111000’ 116 27 64 -27 

61 ‘111100’ 104 15 76 -15 

49 ‘110000’ 111 22 69 -22 

63 ‘111110’ 89 0 91 0 

55 ‘110110’ 87 -2 93 2 

39 ‘100110’ 79 -10 101 10 

Base plan 

(0) 
-- 89 0 91 0 

Table 4. signal plans delay performance 

 fixed-time plan adaptive plan (full policy) adaptive plan (partial policy) 

Delay (sec/veh) 105.0 86.5 87.1 

reduction -- 17.6% 17.0% 

4. CONCLUSIONS 

In this study, we developed a novel approach to address dynamic, spatial and stochastic charac-

teristics of traffic flow for adaptive signal control. Our approach was able to map adaptive signal 

control policies to dynamic traffic detector information and address the closed-loop signal control 

strategy with a mathematical model. Cell transmission model was adopted as the underlying dy-

namic traffic flow model. Certain CTM cells were designated as detector cells to indicate the 

queue presence information. We developed a two-stage stochastic program to address uncertain 

demand for signal control. In stage 1, the base timing plan is determined as a long-term default 

plan. In stage 2, various demand scenarios are loaded to CTM to simulate detector cell state pat-

terns and the corresponding adaptive control policies. The case study at Tai Tam reservoir illus-

trated the performance of the approach. At the end of a signal cycle, we examined the detector 

states to identify the queuing status. The green extension/cut-off policies were re-adjusted in re-

sponse to the unbalanced queues for the next cycle. The preliminary simulation results showed 

that a further 17% delay reduction can be achieved by the adaptive control policies. In the future 

study, we will further investigate a stage-based adaptive control strategy, i.e., the adaptive policy 

is adjusted at the end of each signal stage according to the detector states. We anticipate that the 

stage-based control strategy will exhibit more flexible control impacts to the traffic flow pattern 

variations.  
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