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SHORT SUMMARY 

Deep Neural Networks (DNNs) are accurate and powerful tools for modeling travel decisions. 

Nonetheless, the black-box characteristic of DNNs has decreased their potential implication in 

discrete choice modeling. In this study, we investigate the potentials of cutting-edge post-hoc 

interpretation tools in providing behavioral insight into DNN architectures. We evaluate the rela-

tionship between the output probabilities and input features using the Shapely Additive explana-

tions (SHAP) and Local Interpretable Model-agnostic Explanations (LIME). Using SwissMetro 

dataset, we demonstrate that the outputs of SHAP and LIME are consistent with theory when the 

architecture of DNN is designed based on the Random Utility Maximization (RUM) theory. How-

ever, for a fully connected DNN architecture, SHAP and LIME do not provide behaviorally in-

terpretable outputs. Additionally, the prediction accuracy shows the DNN model based on RUM 

avoids overfitting. 
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1. INTRODUCTION 

DNN models have become ubiquitous in Intelligent Transport System (ITS) due to their powerful 

predictive and efficient learning algorithms and fixable modelling structure. ITS, as an integrated 

transport management system, refers to the use of data communication, information processing, 

traffic management technologies and Artificial Intelligence (AI) in transport (Chen, Liu et al. 

2020). All applications in ITS that rely on DNNs are categorized into four groups of computer 

vision, time series prediction, classification, and optimization (Wang, Zhang et al. 2019). Most 

studies of DNNs in ITS belong to the time series prediction group to model variables such as 

travel time, traffic flow, and traffic speed prediction. On the other hand, the number of applica-

tions in classification using DNNs, particularly modelling travel mode choice, is fairly limited 

(van Cranenburgh and Alwosheel 2019). Traditionally, discrete choice modelers have mostly 

used econometric methods, including discrete choice models. These models are based on a theo-

retical foundation with predefined assumptions and underlying relationships between dependent 

and explanatory variables (Train 2009). Econometric methods are inferior to DNN methods in 

terms of prediction accuracy. This is one of the main reasons that DNNs have become pervasive 

in modelling individuals' behavior (Golshani, Shabanpour et al. 2018).  

DNNs encompass a wide range of architectures such as Convolutional Neural Networks (CNN) 

and Recurrent Neural Networks (RNN) (Goodfellow, Bengio et al. 2016), but the applications of 

DNNs in discrete choice modeling are mainly limited to the most basic DNN’s architecture, called 

Multi-Layer Perceptron (MLP). Even this basic MLP model is shown to achieve higher prediction 

accuracy in comparison with traditional discrete choice models (Assi, Nahiduzzaman et al. 2018). 

Accurate modelling of travel behavior is essential, and it is equally important that high accuracy 

is resulted from an interpretable model. Despite all the advantages of DNNs, they are considered 

as complex black-box (non-interpretable) models because of the numerous parameters in the 

model. In other words, the structure of DNNs is not directly interpretable, as hundreds of 
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parameters need to be described (Zhao, Yan et al. 2020). Nonetheless, a wide range of interpret-

able tools known as Post-hoc explainability techniques are proposed to extract knowledge from 

complex DNN models (Arrieta, Díaz-Rodríguez et al. 2020). The post-hoc approaches justify how 

and why a DNN model has arrived at its prediction (Lipton 2018).  

 

Almost all applications of DNN in discrete choice modeling have applied a post-hoc approach to 

interpret the DNN models. For example, Sifringer, Lurkin et al. (2020) proposed a DNN archi-

tecture inspired by RUM, consisting of an interpretable and a fully connected part. The authors 

calculated the importance of each input variable to the fully connected part using a traditional 

post-hoc approach named the saliency map. However, in addition to finding the importance of 

input variables, the main purpose of post-hoc approaches is evaluating the output of complex 

machine learning models such as DNNs. In other words, the output of the DNN model needs to 

be evaluated using post-hoc approaches to increase the trust in DNN’s decisions. Although there 

is a wide variety of post-hoc explanation approaches in the literature, only a few traditional ap-

proaches of post-hoc analysis can be found in recent studies e.g. (Wang, Mo et al. 2020, Wang, 

Wang et al. 2020, Wang, Wang et al. 2021, Wong and Farooq 2021). 

This study seeks to evaluate recent DNN models in discrete choice modeling using the state-of-

the-art post-hoc approaches. The performance of two novel post-hoc approaches in the literature, 

Shapely Additive explanations (SHAP) and Local Interpretable Model-agnostic Explanations 

(LIME) are tested on a fully connected DNN model and a DNN model based on RUM theory. 

Our study contributes to evaluating the performance and reliability of the recent DNN models in 

discrete choice modeling. Furthermore, this comparison and evaluation process will help the re-

searcher to select the appropriate DNN architecture and interpretation approach.  

2. METHODOLOGY 

Deep Neural Networks and Random Utility Maximisation 

The architecture of DNNs models used in discrete choice analysis can be divided into two groups. 

The first group are those that use a fully connected architecture e.g. (Assi, Nahiduzzaman et al. 

2018, Zhao, Yan et al. 2020), and the second group are those who use customized architectures 

to make the model consistent with behavioral theories such as RUM (Wang, Mo et al. 2020, Wong 

and Farooq 2021). The Fully connected DNN (F-DNN) connects input variables to the output 

probabilities through several layers with hundreds of parameters (Goodfellow, Bengio et al. 

2016). In F-DNN, the utility of each alternative is connected to the attributes of all alternatives. 

The second group encompasses specific types of DNNs developed based on RUM which com-

putes the utility of each alternative based on its corresponding attributes.  

A recent DNN architecture with alternative-specific utility functions (ASU-DNN) proposed by 

Wang, Mo et al. (2020), could achieve high accuracy levels in modeling discrete choice data. 

ASU-DNN contains an input layer, two hidden layers and the output layer. Assume input varia-

bles to be a vector of 𝒙, and the input variables are divided into a vector of alternative specific 

variables denoted by 𝑥𝑖𝑘 and a vector of individual specific variables denoted by 𝑥𝑖 where 𝑖 ∈
{1,2, … , 𝑛} and 𝑘 ∈ {1,2, … , 𝐾}. Then, consistent with RUM (Train 2009), the utility of each al-

ternative is defined as a function of individual specific variables and its corresponding alternative 

specific variables as indicated in equation (1). 

 

 𝑉𝑘 = 𝑉(𝑥𝑖, 𝑥𝑖𝑘) = 𝑤𝑘(𝑔1 ∘ 𝑔2 … 𝑔𝑀2
)((𝑔1

𝑥𝑖𝑘 ∘ 𝑔1
𝑥𝑖𝑘 … 𝑔𝑀1

𝑥𝑖𝑘)(𝑥𝑖𝑘), (𝑔1 ∘ 𝑔2 … 𝑔𝑀1
)(𝑥𝑖)   (1) 

 

In this equation 𝑀1 and 𝑀2 are the number of neurons in the first and second hidden layers re-

spectively; 𝑔(𝑡) = 𝑀𝑎𝑥(𝑡, 0) is the RELU activation function, and 𝑤𝑘 is the vector of parameters 
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to be estimated. In the last layer, the Softmax activation function, shown in equation (2) is applied 

to the utilities in order to calculate the output probabilities (Goodfellow, Bengio et al. 2016): 

 

 𝑆(𝑉𝑖𝑘) =
𝑒𝑉𝑖𝑘

∑ 𝑒𝑉𝑖𝑗
𝑗

  (2) 

Interpretation methods 

The demands for interpretability in DNNs have increased in recent years (Arrieta, Díaz-Rodríguez 

et al. 2020). Therefore, many approaches as the post-hoc expainability methods for DNNs, have 

been developed. The existing post-hoc explainability approaches fall into six categories of text 

explanation, visual explanation, local explanation, explain by examples, explain by simplifica-

tion, and feature relevance explanation. For further details about each category, the reader is re-

ferred to Arrieta, Díaz-Rodríguez et al. (2020). In this study, we apply two approaches, Shapely 

Additive explanations (SHAP) and Local Interpretable Model-agnostic Explanations (LIME) 

from the local explanation category.  

SHAP is a game theory interpretation method of machine learning methods that evaluates the 

negative and positive impact of input variables (Lundberg and Lee 2017). For a given input 𝑋 and 

a DNN model 𝑓(𝑋), SHAP utilizes an Explanation Model (EM) to evaluate the contribution of 

each input variable 𝑥𝑖 to the model 𝑓. 𝐸𝑀 sets up a relationship between 𝑥𝑖 and the model outputs. 

The parameters of this model are called SHAP value denoted by 𝜑𝑖. SHAP values are defined as 

the weighted average of the marginal contributions over all possible coalitions |𝐹|! and are cal-

culated as indicated in equation (3). 

 

 𝜑𝑖(𝑓)  = ∑
|𝑆|!(|𝐹|−|𝑆|−1)!

|𝐹|!{𝑆⊆𝐹}\{𝑖} [𝑓(𝑥𝑆⋃{𝑖}) − 𝑓(𝑥𝑆)]  (3) 

 

In this equation, 𝐹 is the total number of features, and 𝑆 is a subset of 𝐹. 𝑓(𝑥𝑆⋃{𝑖}) is the model 

output using feature 𝑖 and features in S, and 𝑓(𝑥𝑆) is the model output using features in S but 

without feature 𝑖. As computing the exact value of 𝜑𝑖 is challenging, several methods have been 

introduced to approximate SHAP values (Lundberg and Lee 2017). In this study, we apply Kernel 

SHAP as it is a model-agnostic method that can be used for all types of machine learning models, 

and it is a reasonable approach when number of input variables are small in the dataset (Lundberg 

and Lee 2017). 

Similar to SHAP, the LIME belongs to the local interpretation category that measures the impact 

of input variables on the variations of model output (Ribeiro, Singh et al. 2016). LIME generates 

new datasets around an observation 𝑥 consisting of the corresponding outputs of the model. Then, 

an explainable model 𝑔 is trained on the new dataset that is weighted by the proximity of the 

sample observations. With the new explainable model 𝑔 and trained DNN model 𝑓, it is possible 

to provide a rough estimate of the contribution of input variable 𝑥 to the model 𝑓. To accomplish 

this, the following objective function is minimized: 

 

 𝜉(𝑥) =  argmin
𝑔∈𝐺

𝐿(𝑓, 𝑔, 𝜋𝑥) + Ω(𝑔) (4) 

 

Where 𝐺 denotes the set of all interpretable models, and Ω(𝑔) is the complexity of model 𝑔. 𝜋𝑥 

is the proximity measure between generated data to sample 𝑥. 𝐿 measures how unfaithful g is in 

the approximation of 𝑓 in the locality defined by 𝜋𝑥. 

Although it is expected LIME and SHAP yield similar results, they have different structures in 

interpreting models. While LIME generates a perturbed dataset to fit an explainable model, SHAP 

requires an entire sample to approximate SHAP values. 
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3. RESULTS AND DISCUSSION 

This study uses the Swissmetro dataset for evaluating the interpretation of DNNs. This dataset 

was compiled in Switzerland in 1998 (Bierlaire, Axhausen et al. 2001). It contains 1192 respond-

ents who were asked to choose their preferred transportation mode among three alternatives of 

train, Swissmetro and car. This dataset contains 9,036 observations after cleaning. In the current 

study, Travel Time (TT), Travel Cost (CO), AGE and INCOME are selected among available 

variables for choice analysis.  

The two models of ASU-DNN and F-DNN are developed using the Swissmetro dataset. Then the 

two methods are SHAP and LIME are used to provide insight into how these models make pre-

dictions. SHAP and LIME also show which features are most important in both models separately. 

In the end, the performance of ASU-DNN and F-DNN is compared through accuracy and log-

likelihood. In this experiment, ASU-DNN includes two layers with 𝑀1 = 𝑀2 = 100. Similar to 

ASU-DNN, F-DNN includes 2 layers with 100 neurons in each layer. 

In this study, the impact of an input variable on each class will be calculated using SHAP and 

LIME. In contrast to an image input with a 2D set of pixels (which is the common application for 

post-hoc explanation methods), the position of the input variables always has the same meaning. 

For example, if the first input variable of all observations is age, then the first LIME and SHAP 

values will always be the impact of a passenger’s age on each class. The average of absolute 

SHAP values for all features in each class is reported in Figure 1. The first line illustrates the 

SHAP values in ASU-DNN and F-DNN corresponding to each class, and the second line ranks 

the summation of SHAP values for each feature. As shown in plot (a), features related to each 

utility have the most contribution to probability of that utility. For example, Swissmetro Cost 

(SM_CO) and Swissmetro Travel Time (SM_TT) have the highest impact on Swissmetro. How-

ever, from (b), there is no specific connections between input variables and utilities. For example, 

Train Travel Time (Train-TT) has the highest impact on Swissmetro and Car. Plots (c) and (d) 

demonstrate the overall importance of input variables on the output probabilities in ASU-DNN 

and F-DNN. Both models show that SM_CO, SM_TT and Car Travel Time (CAR_TT) have the 

highest impact on the mode choice decision. Also, INCOME and AGE have the least feature 

importance in this classification task. 

    

  

(a) ASU-DNN SHAP values (b) F-DNN SHAP values 
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(c) Ranking SHAP values of ASU-DNN (d) Ranking SHAP values of F-DNN 

Figure 1: Interpretation results of ASU-DNN and F-DNN using SHAP 

 

Figure 2 demonstrates the local interpretability analysis with LIME for instance numbers 130 

and 2137 (randomly selected). All four bar graphs reflect the contribution of each feature to the 

classification of respective 130 and 2137 instances. The true classes of both instances are Swiss-

metro. For ASU-DNN, both (e) and (g) showed that SM_TT and SM_CO have the most contri-

bution in the output probability SM.  On the contrary, (f) and (h) shows CAR_TT has the most 

impact on the probability of Swissmetro in F-DNN model. 

 

  

(e) ASU-DNN LIME values 

Instance = 130 

(f) F-DNN LIME values 

Instance = 130 



6 

 

 

 

 

 

 
 

 

(g) ASU-DNN LIME values 

Instance = 2187 

(h) F-DNN LIME values 

Instance = 2187 

Figure 2: Interpretation results of ASU-DNN and F-DNN using LIME 

For training the DNN models, the dataset is divided into 70% training dataset and 30% test da-

taset. Table 1 shows the number of parameters, loglikelihood and accuracy of  F-DNN and ASU-

DNN for the test and train datasets. Although the performance of F-DNN in training is pressive, 

ASU-DNN outperforms it in terms of accuracy and loglikelihood on the test dataset. This indi-

cates that overfitting is less likely when the RUM theory is implemented in the DNN architecture. 

In ASU-DNN, the number of parameters is reduced from 21,403 to 1,803 which means in this 

architecture, connections that are not supported by the theory are removed from the model. There-

fore some spurious correlations that potentially could cause overfitting are avoided in this archi-

tecture (Yang, Chou et al. 2022). 

 

Table 1: The loglikelihood and accuracy of F-DNN and ASU-DNN for the test and 

train datasets 

 

 Train dataset Test dataset 

Number of      

parameters 

Loglikeli-

hood 
Accuracy 

Loglikeli-

hood 
Accuracy 

F_DNN 21,403 1330.17 98.79 8861.69 67.20 

ASU_DNN 1,803 3519.97 74.92 1831.45 71.78 

 

 

4. CONCLUSIONS 

In this study, DNN models for choice modelling are analyzed using state-of-the-art interpretation 

techniques. It is crucial to clarify how predictions are formed by DNN models when it comes to 
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artificial intelligence in discrete choice modeling. The contribution of this research is the use of 

recent post-hoc approaches to uncover new insights from the recently developed DNN model 

based on RUM theory. We apply SHAP and LIME, two of the most recent interpretation ap-

proaches, to evaluate the performance of ASU-DNN and F-DNN. The contributions of each input 

variable in both models F-DNN and ASU-DNN are retrieved using SHAP and LIME. The inter-

pretation analysis of DNN models shows that DNNs with a theory-based architecture (ASU-

DNN) have more consistency with the RUM theory, in contrast with conventional DNN models 

(F-DNN). Additionally, the results revealed that ASU-DNN could reduce overfitting by eliminat-

ing unsupported connections.  

This research indicates a new research direction of using post-hoc analysis in discrete choice 

modeling. Future studies can concentrate on extracting information from DNN models using other 

post-hoc approaches such as DeepLift.  
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