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Short summary

Zero emission policies in urban centers are promoting the conversion of transit agencies fleets to
battery electric buses (BEBs). This transition raises questions about battery management and
more specifically about the best way to mathematically model this resource in order to respect en-
ergy feasibility constraints while being as little conservative as possible. In an attempt to partially
answer these questions, this work presents a two-stage stochastic model with recourse for the mul-
tiple depot electric vehicle scheduling problem with stochastic travel time and energy consumption
(S-MDEVSP). Vehicles are allowed to be partially recharged and a non-linear charging function is
considered. Our model takes advantage of the full information on the current state of charge that
is available in operation by allowing planned charge time to be extended when energy consump-
tion deviations are observed. We propose a column-generation-based heuristic featuring stochastic
pricing problems to solve a real-life instance from the city of Montréal, Canada. An analysis of the
relevance of our approach for different commercially available BEBs is also provided.
Keywords: column generation, electric bus, two-stage stochastic program, vehicle scheduling

1 Introduction

The multiple depot electric vehicle scheduling problem (MDEVSP) is an extension of the multi-
ple depot vehicle scheduling problem with additional limitations, including shorter driving range,
longer refueling time, and special charging infrastructure. It aims at finding a set of vehicle routes
that covers each timetabled trip exactly once while minimizing the operational costs and respecting
energy feasibility and depot capacity constraints. These vehicle routes are subject to operational
uncertainties (e.g., traffic jams, extreme weather conditions, or special happenings in the city)
that impact travel time and energy consumption. Nevertheless, the MDEVSP is generally solved
without taking these uncertainties into account. This strong assumption may compromise schedule
adherence and lead to solutions with sub-optimal true costs (including recourse costs). A simple
way to guarantee energy feasibility is to adopt a robust optimization approach, i.e., ensuring that
energy feasibility is respected for the worst case energy consumption scenarios (see for example the
work of Bie et al. (2021)). Some less conservative approaches, that we group into stochastic opti-
mization (Li et al., 2021), robust optimization with cardinality constrained set (Jiang et al., 2021),
and dynamic optimization (Tang et al., 2019), have been proposed in the literature to address the
MDEVSP with uncertain travel time and/or energy consumption.
This work presents the first stochastic model for the MDEVSP with stochastic travel time and en-
ergy consumption (S-MDEVSP). We formulate the S-MDEVSP as a two-stage stochastic program
and introduce a recourse policy to recover energy feasibility when the vehicle routes outputted a
priori turn out to be infeasible. The main idea of our approach is to take advantage of the fact
that charging time can be adjusted from day-to-day to cope with energy consumption deviations.
This flexibility in the charging time could allow us to output less conservative vehicle routes than
the robust optimization approach while guaranteeing energy feasibility. However, this flexibility
may also induce delays. To control the build-up of delays, that can also be caused by travel time
deviations, we add a penalty for delays in the objective function as in Ricard et al. (2022). Our
objective is to access the relevance of our two-stage stochastic model for commercially available
battery electric buses (BEBs). Precisely, we want to verify if a substantial reduction in the optimal
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fleet size can be archived by introducing a recourse policy. We propose a branch-and-price algo-
rithm to solve this challenging optimization problem and test our solution approach on a real-life
instance of the city of Montréal.
This paper is organized as follows. Section 2 deals with the problem definition and a two-stage
stochastic program is introduced. We devise a method compute the second stage cost analytically.
A column generation-based solution approach is presented in Section 3. We present the results
of computation in Section 4 and discuss the relevance of our approach for different commercially
available BEBs. Our main conclusions are stated in Section 5.

2 Mathematical model

Let a timetable of trips T , where trip i ∈ T is schedule to start at di, a set of depots D, such
that |D| ≥ 2, and a set of charging stations Q. Each charging station q ∈ Q is time-expanded
as q̃ = {qs1, . . . , qsk}, where s1, . . . , sk are k time intervals of ρ minutes. We denote the set of
time-expanded charging stations Q̃. The S-MDEVSP is defined on the acyclic connection-based
networks Gd(Vd, Ad), for d ∈ D, with node set Vd = T ∪ {nd

0, n
d
1} ∪ Q̃, where nd

0 and nd
1 represent

depot d at the beginning and the end of the day, respectively, and arc set Ad. Given the probability
mass function (PMF) with finite supports of the travel time (hi(t)) and the PMF of the energy
consumption (ei(µ)) of each timetabled trip i ∈ T as well as the travel time tij and the energy
consumption eij between the end location of node i and the start location of node j, for all pairs
of nodes i, j ∈ Vd, the first stage problem of the S-MDEVSP consists of finding an a priori set of
vehicle routes R∗ that covers exactly once each trip i ∈ T and respects the capacity bd of each
depot d ∈ D. A vehicle route is defined as a sequence of timetabled trips and time-expanded
charging nodes starting and ending at a depot d ∈ D. The amount of energy recharged at each
time-expanded charging node included in a vehicle route is derived from a piecewise linear function
similar to the one used in Montoya et al. (2017). In the second stage, the travel time and energy
consumption values are revealed and the a priori plan is modified with respect to a recourse policy
to guarantee energy feasibility. A vehicle route is considered feasible if the state of charge (SoC)
of the BEB never falls below σmin (e.g., 0%), or if one or several recourse actions can be taken
to regain energy feasibility. A recourse action is taken at the second stage if the SoC of a bus is
under ω (e.g., 50%) after a charging activity. It consists in extending the charging activity by one
or several time intervals in order to reach a SoC of at least ω.
Our model for the S-MDEVSP uses the following notation. Let R be the set of all feasible vehicle
routes, Rd be the subset of these routes starting and ending at the depot d, yr be a binary variable
equal to 1 if vehicle route r is selected, and air be a binary parameter equal to 1 if route r covers
trip i ∈ T . The S-MDEVSP can be formulated as the following integer linear program:

min
∑
r∈R

c̄ryr (1)

s.t.
∑
r∈R

airyr = 1, ∀i ∈ T (2)∑
r∈Rd

yr ≤ bd, ∀d ∈ D (3)

yr ∈ {0, 1}, ∀r ∈ R, (4)

where c̄r = cr + βE[Wr(t, µ)] is the expected cost of vehicle route r, cr is the operational costs
of r, β is a weighting factor, and E[Wr(t, µ)] is the expected second-stage cost or r. This latter
cost penalizes the delay a passenger is likely to encounter in route r. Specifically, E[Wr(t, µ)] =∑

i∈r∩T αiE(Xr
i ), where αi is the relative passenger flow (or demand volume) on timetabled trip

i and Xr
i is the secondary delay of timetabled trip i covered by route r (in minutes). A vehicle

route r may be delayed because the travel times of its trips deviate from the planned time, because
buffer times before trips are not sufficient, or because recourse actions are required. By adjusting
the weighting factor β, one can find solutions with different trade-offs between operational costs
and the expected second-stage cost. In general, the larger the β the more reliable the S-MDEVSP
solutions. Analytical equations to compute in the first stage E[Wr(t, µ)], for all r ∈ R generated,
are developed in the following two sections.
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Probability of using a recourse action.

Consider a vehicle route r = (1, 2, . . . , i, i+1, . . . , j−1, j, . . . , n) with trips i and j ∈ T interspersed
by a charging activity of j− i time intervals (i.e., i+1, i+2, . . . , j− 1 are time-expanded charging
nodes). Let mr

j(z) be the PMF with finite supports of the SoC of bus r just before trip j. The
probability of not having to extend the charging time is

Pr{0 extra charge periods before j ∈ r} =

100∑
z=ω

mr
j(z), (5)

and the probability of having to extend the charging time of ϕ charge periods is

Pr{ϕ extra charge periods before j ∈ r} = Pr{z|Λω(z) = ϕ}

=

ω−1∑
z=σmin

mr
j(z)[Λω(z) = ϕ], ϕ = 1, 2, . . . , k,

(6)

where Λω(z) is a function outputting the minimum number of additional charge time periods to
be performed when the initial SoC of a BEB is equal to z in order to get an updated SoC of at
least ω. We use the Iverson bracket (Iverson, 1962) notation (i.e., [P ] is equal to 1 if P is true and
0 otherwise).

Delay propagation.

Let fr
i (y) be the PMF with finite supports of the actual start time of activity i assigned to route

r and gri (x) be the PMF with finite supports of Xr
i , i.e., of the secondary delay of trip i, such that

gri (x) = fr
i (x+ di) when i ∈ T . For i ̸∈ T , gri (x) is not defined.

Consider a route r = (1, 2 . . . , n) and denote P 0
ir := Pr{0 extra charge periods before i ∈ r} and

Pϕ
ir := Pr{ϕ extra charge periods before i ∈ r}. We assume that the first timetabled trip of a

vehicle route r is never delayed (i.e., fr
1 (d1)) = 1). Consider a trip j ∈ (2, 3, . . . , n) preceded by a

trip i. The distribution of the actual start time of trip j can be recursively computed as

fr
j (y) =



tmax
i∑

t=tmin
i

hi(t)

dj−t−Υ(i,j)∑
y′=di

fr
i (y

′)P 0
jr +

k∑
ϕ=1

fr
i (y

′ − ρϕ)Pϕ
jr

 , if y = dj ;

tmax
i∑

t=tmin
i

hi(t)

fr
i (y − t−Υ(i, j))P 0

jr +

k∑
ϕ=1

fr
i (y − t−Υ(i, j)− ρϕ)Pϕ

jr

 , if y > dj ;

0, otherwise,
(7)

where tmin
i and tmax

i are the minimum and the maximum possible travel time values of timetabled
trip i ∈ T , respectively, and Υ(i, j) is equal to tij + τ if there is no charging activity between trips
i and j, or tiq + tqj + τ + (j − i)ρ if there is a charging activity of j − i time intervals at station
q ∈ Q between trips i and j. Here, τ is the minimum layover time before each timetabled trip.
The expected secondary delay of a trip j assigned to r is expressed as E(Xr

j ) =
∑xmax

jr

x=0 x×fr
j (x+dj),

where xmax
jr = di+xmax

ir +tij+τ+tmax
i −dj is the maximum possible secondary delay of trip j when

covered by vehicle route r. It should be observed that fr
j (y), mr

j(z), P 0
ir, and Pϕ

ir are, by definition,
route-dependent. Since the routes are not enumerated but rather generated in our algorithm, is it
impossible to compute fr

j (y), mr
j(z), P 0

ir, and Pϕ
ir for all i ∈ T and r ∈ R beforehand. Instead, the

latter are dynamically generated throughout the solution process.
Every time a trip i is delayed of 1 minute, a penalty of βαi is paid. Depending on the transport
agency’s level of delay aversion, the weighting factor β can be adjusted to find an appropriate
trade-off between the operational costs and reliability. Generally speaking, the larger the β, the
more reliable (or delay-tolerant) the S-MDEVSP solutions.

3 Heuristic branch-and-price algorithm for the S-MDEVSP

Since there is generally a very large number of feasible vehicle routes in the S-MDEVSP, we
propose a branch-and-price solution approach that generates columns (i.e., vehicle routes) instead
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of enumerating them. We use the same heuristic branching strategy as in Ricard et al. (2022) to
obtain integer solutions in a reasonable amount of time.
To identify columns that could be potentially useful to add, we solve one pricing problem per depot
d ∈ D at each iteration. These pricing problems are defined on the networks Gd, for d ∈ D, with
modified arc costs c̃rij defined as

c̃rij =

{
c̄rij − πd, if i = nd

o

c̄rij − ui, if i ∈ T ,
(8)

where (ui)i∈T and (πd)d∈D are dual variables associated with constraints (2) and (3), respectively.
Since the cost of the arcs is stochastic and path-dependent in the S-MDEVSP, these pricing prob-
lems correspond to shortest path problems with stochasticity (Boland et al., 2015; Wellman et al.,
2013) that can be solved by a modified version of the labeling algorithm (see Ahuja et al. (1993)
for more details on this algorithm). Next, we specify the main characteristics of the dynamic
programming algorithm, namely the labels, the extension functions, and the stochastic dominance
criteria.

Labels.

Each label stores a representation of the actual start time cumulative distribution function (CDF),
a representation of the SoC CDF, and the accumulated reduced cost. Let F p

j (y) be the CDF of
fp
j (y) at node j defined as

F p
j (y) =

y∑
y′=dj

fp
j (y

′), (9)

and let Mp
j (z) be the CDF of mp

j (z) at node j defined as

Mp
j (z) =

z∑
z′=σmin

mp
j (z

′). (10)

The label Lp
j of path p at node j is defined as Lp

j = (F p
j (dj), . . . , F

p
j (y

max
jp ),Mp

j (σ
min), . . . ,Mp

j (100), C
p
j ),

where ymax
jp is the maximum value of F p

j (y) and Cp
j is the accumulated reduced cost.

Extension functions.

We want to extend a label Lp′

i = (F p′

i (di), . . . , F
p′

i (ymax
ip′ ),Mp′

i (σmin), . . . ,Mp′

i (100), Cp′

i ) associ-
ated with node i along arc (i, j) to create label Lp

j . The accumulated reduced cost Cp
j at node j is

given by

Cp
j = Cp′

i + c̃pij . (11)

In Section 2, we devised a method to analytically compute the propagation of delays in a sequence
of timetabled trips. Here, we specify this method in the form of an extension function. The PDF
of the actual start time of trip j covered by path p is given by

fp
j (y) =



∑tmax
i

t=tmin
i

hi(t)
∑dj−t−tij−τ

y′=di
fp′

i (y′), if i, j ∈ T and y = dj∑tmax
i

t=tmin
i

hi(t)f
p′

i (y − t− tij − τ), if i, j ∈ T and y > dj or i ∈ T and j ∈ Q̃
fp′

i (y − ρ), if i, j ∈ Q̃∑dj−tij−τ
y′=di

[
fp′

i (y′)P 0
jp +

∑k
ϕ=1 f

p′

i (y′ − ρϕ)Pϕ
jp

]
, if i ∈ Q̃, j ∈ T , and y = dj

fp′

i (y − tij − τ)P 0
jp +

∑k
ϕ=1 f

p′

i (y − tij − τ − ρϕ)Pϕ
jp, if i ∈ Q̃, j ∈ T , and y > dj

0, otherwise.
(12)

The components Mp
j (·) are computed as
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mp
j (z) =



∑100
µ=σmin ei(µ)m

p′

i (z + µ+ eij), if i ∈ T∑100
z′=σmin mp′

i (z′)[λ(z′, ρ× Λω(z
′)) = z], if i, j ∈ Q̃

mp′

i (z + eij), if i ∈ Q̃, j ∈ T , P 0
jp = 1

mp′

i (z + eij) +
∑ω−1

z′=0 m
p′

i (z′)[λ(z′, ρ× Λω(z
′)) = z], if i ∈ Q̃, j ∈ T ,

z ≥ ω, 1− P 0
jp > 0

0, otherwise,

(13)

where λ(z, t) is a piecewise linear function giving the final SoC of a battery after a charge of t
minutes that started with an initial SoC of z. We assume all BEBs start the day fully charged.

Stochastic dominance criteria.

Consider two paths p1 and p2 with resident node i. Path p1 dominates path p2 when the following
conditions hold:

1. Cp1

i ≤ Cp1

i

2. F p1

i (y) ≥ F p2

i (y), for all y ∈ {di, di + 1, . . . , di + max{ymax
ip1 , ymax

ip2 }}

3. Mp1

i (z) ≤ Mp1

i (z), for all z ∈ {σmin, σmin + 1, . . . , 100}

All dominated paths can be safely discarded because they are not part of the Pareto-optimal set
of paths or will not be extended into Pareto-optimal paths.

4 Computational results

We tested our model on a real-life instance from the city of Montréal of 273 timetabled trips, 2
depots, and 2 charging stations. To minimize battery degradation, σmin is set to σmin = 25%. We
compared our approach for two different types of commercially available BEBs; an electric shuttle
with battery capacity (C) of C = 80 kWh, charger power (W ) of W = 60 kW, and an average
consumption rate of 0.76 kWh/km (Gao et al., 2017) and a 35-foot transit bus with C = 492 kWh,
W = 221 kW, and an average consumption rate of 1.57 kWh/km (Proterra, 2022). We assume the
energy consumption distributions follow a normal distribution.
The heuristic performance of our solution approach and the quality of the solutions are reported in
Table 1 and 2, for the first and second type of BEB, respectively, for β values ranging from 0 to η,
where η is the cost per bus used, and ω values ranging from σmin to 75% of the battery capacity.
When ω = σmin, our approach is equivalent to a robust optimization approach (i.e., no corrective
actions). The columns display the relative difference in percentage between the upper bound and
the lower bound (Gap), the number of branching nodes explored (Nodes), the computing times
(CPU time), including the total time in seconds (Total), the portion of the total time dedicated to
solve the root node (Root) and the pricing problems (Pricing), the operational costs (Op. costs),
the fleet size (bus) and the total penalty for delays (

∑
r∈R∗ E[Wr(t, z)]).

For both vehicle types, all problems are solved in less than 2 hours with almost all the computing
time spent on solving the pricing problems. Also, the solutions obtained with our approach are at
most 0.16 % more expensive than their corresponding lower bound, suggesting that our heuristic can
find near-optimal solutions. Generally speaking, when β increases, the operational costs increase
and the reliability improves.
For the first type of BEB, namely the shuttle with C = 80 kWh and W = 60 kW, the introduction
of the recourse policy provides significant cost savings. Indeed, the fleet size can be reduced from
30 BEBs to 29 BEBs by introducing a recourse policy with ω ≥ 50, which could be considered
as a substantial reduction since the number of vehicles used constitutes the major part of the
operational costs. Furthermore, the deterioration in reliability that the charging policy introduces
can be compensated for by a higher weighting factor β.
For the second type of BEB, namely the 35-foot transit bus with C = 492 kWh and W = 221 kW,
introducing a recourse policy does not improve the cost of the solutions found nor does it reduce
the size of the fleet. Thus, for this second type of vehicle with larger battery capacity and higher
charging power, our approach is not useful and a simple robust optimization approach should be
used to find vehicle routes such that the vehicles never run out of energy. Indeed, for this type of
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Table 1: S-MDEVSP heuristic performance and quality of the solutions, with C = 80 kWh
and W = 60 kW

Heuristic performance Quality of the solutions

CPU time

β ω Gap (%) Nodes Total (s) Root (%) Pricing(%) Op. costs Bus
∑
r∈R∗

E[Wr(t, z)]

0 σmin 0.05 28 1,361 39.0 99.4 32,301.8 30 0.57
35 0.05 28 1,362 39.4 99.5 32,301.8 30 0.57
50 0.05 27 1,567 42.1 99.5 31,374.0 29 0.70
75 0.09 27 2,054 38.5 99.6 31,438.4 29 0.67

avg. 0.06 28 1,586 39.8 99.5 31,854.0 30 0.63

η/2 σmin 0.13 28 3,264 34.7 99.8 32,364.0 30 0.24
35 0.13 28 3,152 34.2 99.8 32,364.0 30 0.24
50 0.14 28 5,170 24.9 99.9 31,451.6 29 0.26
75 0.16 29 6,341 28.3 99.9 31,430.8 29 0.33

avg. 0.14 28 4,482 30.5 99.8 31,902.6 30 0.27

η σmin 0.09 27 3,236 38.2 99.8 32,431.2 30 0.12
35 0.09 27 3,226 37.8 99.8 32,431.2 30 0.12
50 0.14 30 5,681 25.8 99.9 31,526.0 29 0.15
75 0.08 25 6,032 36.3 99.9 31,471.0 29 0.22

avg. 0.10 27 4,544 34.5 99.9 31,964.8 30 0.15

Table 2: S-MDEVSP heuristic performance and quality of the solutions, with C = 492
kWh and W = 221 kW

Heuristic performance Quality of the solutions

CPU time

β ω Gap (%) Nodes Total (s) Root (%) Pricing(%) Op. costs Bus
∑
r∈R∗

E[Wr(t, z)]

0 σmin 0.02 21 1,059 49.7 99.6 27,290.4 26 0.49
35 0.02 21 1,434 53.8 99.6 27,290.4 26 0.49
50 0.02 21 1,145 49.4 99.6 27,290.4 26 0.49
75 0.01 19 1,106 53.3 99.6 27,286.4 26 0.41

avg. 0.02 21 1,186 51.5 99.6 27,289.4 26 0.47

η/2 σmin 0.01 19 2,025 49.2 100.0 27,325.2 26 0.16
35 0.01 19 2,855 53.4 100.0 27,325.2 26 0.16
50 0.01 19 2,051 49.1 100.0 27,325.2 26 0.16
75 0.01 21 2,567 49.1 99.9 27,325.2 26 0.16

avg. 0.01 20 2,374 50.2 100.0 27,325.2 26 0.16

η σmin 0.01 21 2,091 46.7 100.0 27,362.6 26 0.11
35 0.01 21 3,002 50.1 100.0 27,362.6 26 0.11
50 0.01 21 2,294 47.0 99.9 27,362.6 26 0.11
75 0.01 22 2,051 47.5 99.9 27,364.0 26 0.11

avg. 0.01 21 2,360 47.8 99.9 27,363.0 26 0.11
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BEB, the battery capacity is large enough that vehicles only need to charge once or twice a day.
Because timetables of trips typically include off-peak periods with fewer trips to make, charging
activities can easily be scheduled during these periods and batteries are often charged to their
maximal capacity. In this context, the recourse policy we introduced is never activated.

5 Conclusions

In this work, we introduced a stochastic model for the MDEVSP that we formulated as a two-stage
stochastic program with a recourse action. We proposed an efficient branch-and-price algorithm to
solve this challenging problem. Our results indicated that the use of recourse actions is beneficial
for shuttle BEBs with relatively small battery capacity and charging power, but not for 35-foot
transit BEBs with larger battery capacity and charging power. Medium- to large-scale transit
agencies are typically equipped with up-to-date BEBs that resemble the second type of vehicle
tested, so our approach is probably not relevant for them. However, our two-stage stochastic
model may be relevant for smaller transit agencies or those with access to fewer resources. Future
work includes translating our approach to other routing problems with smaller electric vehicles,
for example the electric dial-a-ride problem.
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