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SHORT SUMMARY 
Public transport systems are typically designed based on estimated passenger demand and supply 

patterns, yet may often be called to operate under vastly different operational settings. To system-

atically design resilient transit systems, it is necessary to “weave” resilience-oriented thinking 

into the established public transport network design process, moving from an abstract concept to 

an implementable methodology. This study aims to effectively and efficiently design resilient 

public transport networks through the integration of Reinforcement Learning (RL), Local Search 

operators and Particle Swarm Optimization. We present a redundancy indicator and integrate it 

within a hybrid RL-enhanced metaheuristic solution framework to design more resilient route 

structures. We apply the proposed Memetic algorithm to an established benchmark from the lit-

erature and validate the proposed approach under a series of random and targeted attacks, simu-

lating link disruptions. Results demonstrate that resilience can be enhanced through redundancy 

without adversely impacting average travel times.  
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1. INTRODUCTION 

Most existing systems are over-optimized to predefined design inputs. However, as a great deal 

of uncertainty persists, these systems become fragile to ever-changing external conditions. This 

is especially true when it comes to transportation systems, and particularly public transport net-

works (Mattsson and Jenelius, 2015). Indeed, these systems were once designed for predicted 

passenger demand and supply patterns, yet are now called to operate under vastly different oper-

ational settings. Still, medium and long-term disruptions (e.g. road closures, maintenance works) 

can induce significant changes in supply and trigger shifts in passenger demand, rendering public 

transport systems vulnerable and often unviable. In such cases, associated costs incurred by pas-

sengers and operators are unaccounted for in the design process, albeit significant. Due to rigid 

constraints and limitations of the underlying network structure, strategic interventions are limited 

in such cases, with disruptions associated with wide and sustained implications (Jenelius and Cats, 

2015).  

 

Under this scope, an important consideration refers to the ability of transport networks to with-

stand perturbations and maintain their serviceability. Towards this goal, several concepts have 

been introduced in the literature to evaluate the performance of transport networks under disrup-

tion, notably robustness, vulnerability, and resilience (Ge et al., 2022). In transportation-related 

literature, vulnerability and resilience are viewed as core properties of public transport systems, 
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both considering the decrease in network performance under perturbations (Ge et al., 2022; Matts-

son and Jenelius, 2015). 

 

Under this scope, a large stream of studies sought to identify critical network links/segments, a 

posteriori investigating the link between network design and vulnerability (Cats, 2016; Mattsson 

and Jenelius, 2015; Rodríguez-Núñez and García-Palomares, 2014; von Ferber et al. 2012). De-

spite these observations, in terms of a priori designing resilient transit networks, there is a large 

gap in the respective literature. The problem of optimally designing surface public transportation 

systems, referred to as Transit Route Network Design Problem (TRNDP), has attracted the in-

terest of the research community for over five decades (Iliopoulou et al. 2019). Still, despite the 

vast literature on the general TRNDP, methods for designing resilient transit networks are lacking.  

 

Motivated by the gap in the respective literature, this study presents a methodological framework 

for enhancing resilience within the TRNDP, without negatively impacting performance. To 

achieve this, we incorporate Reinforcement Learning (RL) within a metaheuristic solution frame-

work to reinforce the resilience of transit networks, under the planning paradigm for enhanced 

connectivity. In particular, the availability of trip alternatives, i.e. the amount of redundancy of-

fered, allows for the impacts of link-based incidents to be absorbed (Rodríguez-Núñez and Gar-

cía-Palomares, 2014). To that end, a particle swarm optimization (PSO) algorithm integrated with 

neighborhood operators which manipulate the degree of connectivity, referred to as Memetic 

PSO, is developed and enhanced through RL to reinforce path redundancy. We adopt the view 

that resilience is related to the network’s performance decrease, as computed based on demand 

coverage and transport efficiency, under a shift in operating conditions and develop a set of bi-

directional link-based disruption scenarios to be investigated, representing full link closures (Cats, 

2016).  

2. METHODOLOGY 

This section presents a general formulation for the TRNDP, the proposed redundancy indicator 

and outlines the components of the developed algorithmic framework. 

The TRNDP 
In general, there is no commonly accepted mathematical programming formulation for the 

TRNDP due to its inherent complexity and discrete nature (Iliopoulou et al., 2019). A high-level 

mathematical formulation for the TRNDP can be given as follows. Let: 

 

ATTRS: Average Travel Time for route set RS 

C:  the vector of path costs on the transit network 

d0RS: Percentage of passenger demand satisfied without transfers for route set RS 

d1RS: Percentage of passenger demand satisfied with one transfer for route set RS 

d2RS: Percentage of passenger demand satisfied with two transfers for route set RS 

dunRS: Percentage of unsatisfied demand for route set RS 

R:  Route  RS  

R̂S : Vector of optimal routes 

RM:     Maximum number of routes R in RS 

RS:  Set of routes {R} 

Q:   the vector of segment flows on the transit network 

pRS:  Path redundancy score for route set RS 

sR:  Number of stops per route R 
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smin: Minimum number of stops  

smax: Maximum number of stops  

U:   the user route choice model function 

ω:  Weighting factor 

 
ˆ( ) arg min ( , )Z=RS RS Q                    (1) 

RS RSZ ATT p= −         (2) 

 s.t. 

0 1 2( , , , , , , ) ( ( ))RS RS RS RS unRS RSATT d d d d p U C=Q RS     (3) 

min maxRs s s  ,        R RS         (4) 

R K                  R RS         (5) 

RS RM
         (6) 

0unRSd =
          (7) 

  

The problem seeks to determine the route set that minimizes the objective function (Eq. 1). The 

latter represents the user cost associated with the route set, defined in this case as a score resulting 

from the weighted difference of average travel time (ATT) and the redundancy indicator (Eq. 2). 

In this case, ATT is the most important metric, as it also reflects direct ridership due to transfer 

penalization  (Fan and Mumford, 2010). The values of ATT, the redundancy indicator and other 

route evaluation criteria, are derived from the transit assignment process, which is represented by 

Equation (3). Equation (4) specifies the minimum and the maximum number of stops for routes. 

Equation (5) states that two individual routes cannot coincide, while Equation (6) specifies the 

maximum number of lines. Last, Equation (7) states that the percentage of unsatisfied passengers 

must be zero.  

Redundancy 
The challenge in statically capturing resilience through a performance indicator is that one should 

account for the behaviour of the network under several disruption scenarios, as a full network 

scan is not computationally feasible for each candidate solution during the optimization. To that 

end, the number of alternative paths offers useful insights and is linked to better performance 

under disruptions, as route redundancy allows for flexibility to passengers (Cats, 2016). Based on 

this observation, we propose the use of a modified global efficiency indicator, which we name 

path redundancy, defined as follows: 
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Where w denotes an OD pair, dw the corresponding demand and mw denotes the number of distinct 

transit paths offered based on the physical network. This distinction is important, as, different 

route combinations could use the same physical path. We filter the number of available paths 

through the physical road network to determine the number of distinct physical paths exploited 

by the route network. However, physical path overlap must still be taken into account, as it may 

lead to overestimating the number of distinct alternatives. To account for the reduction in redun-

dancy due to overlapping segments we scale the number of physical paths by considering an 

overlap coefficient. More specifically, given a set of feasible paths Lw serving a specific OD pair 

w, the number of distinct physical paths is computed by considering the equivalent path index ol 

for each path l, defined as follows: 
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Where u is an edge of path l, Ul the set of edges comprising path l, kw
u the number of paths for the 

specific OD pair w traversing segment u. Finally, the total number of distinct paths for a pair w is 

given by summing the corresponding values for all paths l in Lw: 

 

w

w l

l L

m o


=         (10) 

So that mw is the number of distinct physical paths for OD pair w, accounting for similarities. 

The proposed Memetic RL-enhanced PSO algorithm 

Motivated by the performance of emerging RL-enhanced PSO algorithms and Memetic PSO var-

iants, we propose a discrete-space Memetic PSO where Q-learning is employed to select the 

search actions of each particle, referred to as MQLPSO. The proposed algorithm flexibly incor-

porates the discrete PSO operators for the TRNDP to effectively perform exploration for promis-

ing solutions within the entire region, a local-search procedure as the refinement step and a Q-

learning framework as the operator selection mechanism. We employ four local search operators 

in total, which specifically target connectivity and thus, path redundancy, allowing the algorithm 

to perform exploitation for solution improvement in subregions. Each action contains a set of 

movements; three global search operators are used to move particles towards the global and per-

sonal best and four local search operators are used to refine individuals. The framework of the 

proposed algorithm is shown in Figure 1.  
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Figure 1 MQLPSO framework 

In this specific instance, we are interested in designing a network that offers low average travel 

times with as much redundancy as possible. Therefore, the following three-piece reward function 

is defined, after experimentation:  

 

 

1     , if '  and '

0.5  , if '  or '

1   ,  otherwise
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      (11) 

Where ATT and ATT’ denote the value of ATT for the previous solution and the current, respec-

tively; p and p’ are the redundancy scores of the previous and current solution, respectively.  

3. RESULTS AND DISCUSSION 

The road network used as input by the proposed MQLPSO algorithm is based on a real Swiss 

road network (Mandl, 1980), comprised of 15 nodes and 21 links., and is the widely accepted 

benchmark for the TRNDP. The demand matrix is symmetric, and the routes run in both direc-

tions. The configuration is shown in Figure 2. 
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Figure 2. Mandl’s Network configuration 

 

In this case, we simulate link-based attacks, by removing links both at random and based on their 

criticality. For random attacks, we simulate the removal of 1- 10 random links and run 100 ex-

periments per case to assess the impact on network performance to evaluate a representative set 

of scenarios (Matisziw et al., 2009). For targeted attacks, we consider scenarios without the most 

critical link and the most critical sequence of up to 10 link disruptions. This process enables the 

identification of links absorbing trips that have been diverted because of disruption in different 

scenarios. We identify critical links based on the value of the passenger betweenness centrality 

indicator (Cats, 2016). The measure is defined as follows: 

 

1
( )u w w

w Ww

w W

PBC g u d
d 



= 


       (18) 

 

Where gw(u) denotes the fraction of shortest paths for OD pair w traversing link u. We recalculate 

betweenness centrality after each edge removal. 

 

For evaluation, we will compare the following algorithmic setups using the same random seed, 

conducting 20 experiments in all cases: 

i. MQLPSO with coefficient ω=0.1 in the objective function, so that ATT and redundancy 

are incorporated both at the objective and reward functions.  

ii. MQLPSO with coefficient ω=0 in the objective function, so that ATT minimization is the 

optimization objective and redundancy is enforced only through the reward function.  

iii. The PSO global search step combined with random selection of local search operators, 

referred to as Memetic PSO (MPSO) aiming to minimize only ATT. We use this as a 
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benchmark reflecting the typical TRNDP design process while capturing the exploitation 

capabilities of the neighborhood operators to some extent. 

Table 1 shows the results for transit network configurations with 4 routes. 

Table 1. Comparison of solutions generated among methods for 4-Route Case 

Performance 

Criteria 

Algorithm 

 

MQLPSO 

best 

MQLPSO 

best 

MPSO 

best 

MQLPSO 

avg 

MQLPSO 

avg 

MPSO 

avg 

ω 0.1 0 0 0.1 0 0 

ATT (min) 10.6 10.51  10.54 10.7 10.68 10.71 

p 3.42 3.42 3.03 3.17 3 2.97 

d0 (%) 89.21 90.88 91.59 89.71 89.94 89.86 

d1 (%) 10.79 9.12 7.71 10.03 9.86 9.85 

d2 (%) 0 0 0.71 0.26 0.2 0.29 

dun (%) 0 0 0 0 0 0 

Run time (s)    72 60 78 

 

As seen in Table 1, MQLPSO produces similar quality results in both cases. The best solutions 

produced in this case feature the same redundancy value (3.42 vs 3.03 of MPSO, i.e. a 13% im-

provement), yet the solution under ω=0 features a lower value for ATT and improved direct de-

mand coverage, which is reasonable. In the average case, higher redundancy values are generated 

if both criteria are enforced through the objective function (3.17 on average), with a slight im-

provement of passenger-related performance criteria observed under ω=0. Both cases of 

MQLPSO produce superior solutions to MPSO with zero two-transfer shares, demonstrating that 

the proposed RL scheme can improve both ATT and redundancy at the same time. To illustrate 

the value of reinforcing redundancy we compare the route configuration generated by MPSO with 

the route configuration under ω=0.1, as on average it yields improved values for redundancy. 

Figure 3 shows the performance decrease of the network with p=3.42 vs p=3.03 under a series of 

random attacks, with boxplots summarizing 100 random runs. 

 

 
Figure 3. Random attack impacts for the 4-route case. 

Figure 3 clearly shows the difference in performance decrease between the two network config-

urations, across all relevant indicators. As a general observation, a clear trend may be discerned 

where the route network with the smaller redundancy exhibits larger variability in terms of de-

mand coverage under random attacks, with proportionally more scenarios resulting in worse out-

comes. In fact, for the route network with the lowest path redundancy 25% of scenarios feature 

direct coverage between 45% and 64%, after the removal of 3 links versus 56% - 69% with 
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p=3.42, besides a couple of outliers. After 4 link removals, the median value for unsatisfied de-

mand is consistently higher in the unprotected network, with discrepancies becoming larger with 

the extent of disruption. The removal of a 4th link seems to be a turning point for performance 

loss, as a notable rise in unsatisfied demand and an abrupt decline in the efficiency of both net-

works is observed with consistently inferior values for p=3.03. For 7-link disruptions, the differ-

ences between the two networks become more pronounced, with the more redundant network 

retaining a larger portion of its serviceability with under 25% of unsatisfied passengers in the 

median case, compared to 33% for the less redundant network. Even in the case of an extended 

10-link disruption, the former maintains a 10% advantage in terms of demand satisfaction over 

the latter. 

Figure 4 shows the performance decrease under targeted attacks up to 10-edge disrup-

tions. 

 
Figure 4. Targeted attack impacts for the 4-route case.  

As seen in Figure 4, the value of redundancy becomes apparent after 3 consecutive removals, with 

unsatisfied demand higher across all cases after that point for the network with the lower redun-

dancy measure. The efficiency and thus the passenger carrying capacity drops more abruptly in 

this case, with 4-link disruptions being the critical point. Indeed, for a sequence of 4 critical links 

removed, there is more than 25% difference in unsatisfied demand between the two networks and 

20% in efficiency. Even though the relative gap becomes smaller with successive removals, the 

results for the unprotected network are consistently superior to those for the reinforced network. 

Even at 10 successive removals of the most critical link, the more redundant network serves 6% 

more passengers. 

 

4. CONCLUSIONS 

This study showcased a two-pronged resilience-oriented design framework: on the one hand, a 

redundancy indicator was developed and incorporated in the TRNDP solution process within an 

intelligent optimization framework and on the other hand, multiple simulation runs were per-

formed to assess generated solutions and evaluate the design process. Results demonstrated that 

redundancy can reduce the impacts of link disruptions, reducing associated repercussions on de-

mand coverage, with negligible costs in terms of average travel times. The more redundant net-

work incurred a lower share of unsatisfied demand for multiple-link disruptions, either random 

or targeted, and a smoother decline in efficiency, retaining a larger portion of its serviceability. 

Respectively, the networks with lower redundancy exhibited more unpredictable behavior under 

attacks, with higher variability and more damaging worst-case scenarios. For targeted attacks, the 

value of redundancy is still evident, yet relatively lower compared to the case of random attacks. 
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This may perhaps be expected, as targeted attacks are based on the maximum weighted between-

ness centrality measure, which may still be high even in redundant networks. 
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