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Short summary

The emergence of GPS-enabled smartphones and crowdsourcing tools are unique opportunities for
understanding transport behaviour. However, the datasets they generate are often unbalanced, as
individuals may use the service collecting data at different frequencies and periods. This raises
important questions: are typical discrete choice models robust to this unbalance? Are model
estimates biased towards over-represented individuals?

This paper tackles the issue of handling unbalanced panel datasets for route choice modelling. It
first develops a simulation experiment to study to which degree Mixed Logit Models with panel
effects reproduce the population preferences using unbalanced data. It then investigates bias
reduction strategies, using subsampling and likelihood weighting. These strategies are compared
to give guidelines that fit the model purpose. We show that weighting and subsampling techniques
can reduce the bias when interpreting the model output for tastes. Combining these techniques
helps to find an optimal trade-off between bias and variance of the estimates.

Keywords: Unbalanced panel, panel mixed logit model, subsampling, likelihood weighting, bias-
efficiency trade-off

1 Introduction

An increasing number of large crowd-sourced datasets are available for choice modelling. For
instance, smartphone GPS datasets bring researchers new opportunities when analyzing bicycle
traffic. They overcome some limitations related to stated preference data or small sample sizes
(Nelson et al., 2021; Lee & Sener, 2021). However, due to their crowd-sourced opt-in nature, such
datasets may suffer from having a large proportion of the data collected by only a few active
users. This may be problematic if the models estimated on these datasets are used for policy
implications or forecasting purposes, for instance if the preferences of these active users differ from
the population mean.

The issue of repeated observations per individual in the panel setup for the mixed logit model
has been addressed in the literature in the context of stated preference (SP) data. Bliemer &
Rose (2010) recognized the advantages of panel setup and studied the construction of an optimal
experiment design (in terms of the statistical properties of the model) for stated choice surveys
with panel information. Rose et al. (2009) found that adding repeated choice observations per
individual improves the model accuracy only until a certain point. Including multiple repeated
observations from an individual, which are identical in terms of both the set of attributes and the
choice outcome, can be used to account for the effect of e.g. habit (Cherchi & Cirillo, 2014) or
correlation patterns (Cherchi et al., 2017).

Yáñez et al. (2011) found that the most significant improvement to the model in terms of fit can
be attributed to the introduction of panel correlation. Furthermore, including multiple identical
observations should not influence the efficiency of the estimated parameters and does not contribute
to the improved capability to retrieve the true parameters. The latter can, however, be improved
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by introducing weighting since it increases the influence of the fixed part of the utility over the
random part.

Two recent studies (van Cranenburgh & Bliemer, 2019; Ortelli et al., 2022) recognize the challenges
of estimating models based on rapidly emerging massive data sources. They propose strategies
for a dataset size reduction by optimizing multiple criteria, such as model efficiency, estimation
bias, out-of-sample performance, computational time, and value of time for relevant parameters.
They propose optimizing the mixed logit model setup based on a simpler multinomial model
(MNL).

However, these papers do not answer the question: are estimates biased toward individuals con-
tributing more to a crowdsourced dataset? How to deal with a bias-efficiency trade-off? This paper
aims to fill this gap, first testing whether discrete choice models estimated with unbalanced data
represent the average tastes of the individuals of the sample population and then finding solutions
to eliminate the potential sources of bias.

2 Methods

Estimated model: the Panel Mixed-Logit model (PMXL)

The Mixed Logit model with panel effects, also denoted Panel Mixed-Logit (PMXL), builds on
the traditional Multinomial Logit (MNL) model (McFadden et al., 1973; McFadden & Train, 2000;
Train, 2009).

The Panel Mixed-Logit model can be derived as follows: a decision maker n ∈ {1, ..., N} has Tn

choice situations t ∈ {1, ..., Tn}. For each situation t, the decision maker n can choose an alternative
i from choice set Cnt, whose utility Unti can be written as:

Unti = V (βn, Xnti) + ϵnti

βn is a parameter representing the tastes of decision maker n, Xnti is a vector of attributes and ϵnti
is a stochastic error term. Under the logit assumption, the ϵnti’s are independently and identically
distributed (iid) according to Gumbel(0,1). The choice probability of alternative i by decision
maker n in choice situation t (i.e., the event (ynt = i)) is given by:

P(ynt = i|βn, Xnti) =
eV (βn,Xnti)∑

j∈Cnt

eV (βn,Xnti)
(1)

We assume the utility is linear in parameters, i.e. that V (βn, Xnti) = β⊤
n Xnti. The PMXL

model assumes that tastes vary across individuals and that these tastes βn ∼ f(β|θ) are iid across
decision-makers. The PXML probability of the sequence of choices in = i1, ..., iTn for decision
maker n is then given by:

Pin(β) =

∫ Tn∏
t=1

P(ynt = it|β, Xnt)f(β|θ)dθ (2)

This probability is approximated through simulation, using:

P̂in(β) =
1

R

R∑
r=1

Tn∏
t=1

P(ynt = it|βr, Xnt) (3)

Where the βr are drawn from the distribution f(β|θ). The parameter β is estimated through
Maximum Simulated Likelihood Estimation (MLSE). We define the simulated log-likelihood of the
observations (y,X) as:

LL(β|y,X) =

N∑
n=1

ln P̂in(β) (4)
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Path-Size correction

Route choice modelling often involves choice sets with overlapping routes, leading to correlated
alternatives and violating the independence assumption of irrelevant alternatives (IIA) in the MNL.
To account for this, each alternative receives an additional attribute measuring their overlap with
other routes of the choice set. For an alternative i of choice situation t or an individual n, the
Path-Size correction (Ben-Akiva & Ramming, 1998) is defined as:

PSnti =
∑
a∈Γi

la
Li

1∑
j∈Cnt

δaj
, (5)

where Γi is the set of links for alternative i, Cnt it the set of alternatives for choice situation t, la
is the length of link a, Li is the length of alternative i, and δaj equals 1 if j includes link a and 0
otherwise. The utility of an alternative Unti can be written as:

Unti = V (βn, Xnti) + βPS lnPSnti + ϵnti (6)

Where βPS is the Path-Size coefficient to estimate.

Model evaluation

To compare model outputs, we need metrics evaluating bias and precision of the estimations. We
denote the Maximum Likelihood estimator of a true parameter vector β = (β1 . . . βK)⊤ of size
(1×K) as β̂ = (β̂1 . . . β̂K)⊤.

Bias The bias of an estimator is the difference between this estimator’s expected value and the
true value of the estimated parameter. It is given by Bias(β̂) = E(β̂) − β. In the case of a

multidimensional estimator, we calculate ∥Bias(β̂)∥2 =
K∑

k=1

Bias(β̂k)
2

D-error The D-error is an efficiency metric commonly used in experimental designs (see Kessels
et al. (2006) for an overview). It is defined as the determinant of the AVC matrix, exponentially
scaled w.r.t. to the number of parameters. We calculate the AVC matrix Ω = H−1 as the inverse
of the log-likelihood Hessian matrix at the estimates. For i, j ∈ {1, ...,K} the Hessian matrix
coefficients Hij are given by,

Hij(β̂) = E
[
∂2LL(β)

∂βi∂βj

]
β=β̂

Then, the D-error is given by:
D-error = detΩ1/K (7)

Minimizing the D-error is minimizing variances and covariances of the estimates. Lower D-error
values indicate higher efficiency of the estimated parameter results regarding standard errors.
However, it does not provide information on the bias of the estimated parameters.

3 Simulation experiment

In order to test if the Panel Mixed Logit model reproduces the population parameters, we need
to conduct a simulation experiment with known true parameters and sample composition. The
following simulation mimics a route choice modeling framework. For one of the population
parameters (linked to Elevation gain), we will assume that the number of observations in our
dataset is correlated to the parameter individual value.

Step 1 - Network and attributes: We design a small network, with p ∈ {1, ..., P} Origin-
Destination (OD) pairs and choice sets Cp of routes linking them. These routes have k attributes.
For an alternative l of a pair p, we can store these attributes in a vector Xl,p ∈ Rk. We call Xp

the matrix storing the attributes of all the alternatives of Cp.

The network consists of three OD pairs, A-B, B-C, and A-C (see Figure 1), each linked by 9
routes, composed of all the combinations of links going closer to the destination. Each link has

3



four attributes: Length (associated to parameter βL), Elevation Gain (βE), Bicycle Infrastructure
(βI) and Surface type (βS). A Path-Size correction term (βPS) (see Equation 5) handles the
correlation between routes.
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Fig. 1: Network, composed of three ODs and 24 links

Step 2 - Draw population: Assume that the general population follows a multivariate
normal distribution for their parameters, i.e., the parameter vector β ∼ N (β|µ,Σ). Σ =
diag(σ2

1 , ..., σ
2
k).

In our simulation, we assume the true parameters values given in Table 1, and that σS = σL =
σPS = 0.

We draw samples of N = 100 individuals. The distributions and histograms for the random
parameters are plotted below (see Figure 2). We write βn =

(
βL,n βE,n βI,n βS,n βPS,n

)⊤the
individual parameter drawn for individual n.
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Fig. 2: Histogram of 100 draws (a population sample) for the random parameters βE and
βI

Step 3a - Draw OD pairs: For each individual n, draw uniformly a permutation πn of the
trip purposes fulfilled on each OD. For each drawn individual, the points A, B, C can either be
their "home", "work/study place" or "leisure" place. These are allocated randomly with an equal
probability of 1

3 .

Step 3b - Draw number of observations: The number of drawn observations depends on the
βE values. This means individuals with more observations in the dataset are the least sensitive to
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elevation gain. For n ∈ {1, ..., N}:

Tn = ϕ(βn) = ⌈a exp(b ∗ λ(βE,n))⌉ (8)

λ(βE,n) is the index of βE,n in the sequence of βE,n in increasing order. The maximum number
of draws per individual has been set to n∗ = 200, so we chose a = n∗

exp(bN) so that n1 = 1 and
nN = n∗. b = 0.075 is a scaling constant. We draw a total of 2819 observations.

Step 4 - Draw of observations For n ∈ {1, ..., N} and t ∈ {1, ..., Tn} do:

1. Draw the used OD pair pn,t ∼ Categorical(q1, ..., qP |πn) using the probability distribution of
bicycle trip purposes given by the Danish National Travel Survey (Christiansen & Baescu,
2022). q1 = P(Home-Work) = 0.46, q2 = P(Home-Leisure) = 0.24, q3 = P(Work-Leisure) =
0.3.

2. Draw the chosen alternative yn,t ∼ Categorical(L(βn,Xpn,t
)), where

L(βn,Xpn,t
) =

exp(β⊤
n Xpn,t)∑

l∈Cpn,t

exp(β⊤
n Xl,pn,t

)
(9)

Step 5: Based on these observations re-estimate a discrete choice model.

Step 4 is repeated Nexp = 100 times, to account for the randomness of the dataset creation process.
The flow-chart (Figure 3) illustrates the described steps.

Design a toy network with
 origin-destination pairs

and  attributes,  for

For each individual  and
observation :
- Draw the observation OD pair

- Draw chosen alternative

Draw population of size ,

Assume population
parameters

,

For each individual 
calculate  = 

the number
 observations

For each invividual , draw
uniformly a permutation of
trip purposes on each OD

pair 

Re-estimate the
parameters using

MLE

Assume distribution of
trip purposes 

over the ODs

Fig. 3: Flowchart of the simulation experiments

All models are estimated using the Python library xlogit (Arteaga et al., 2022).
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4 Results: base models

Three base models have been estimated: a Multinomial Logit model (MNL), a Mixed Logit model
(MXL) and a Panel Mixed Logit Model (PMXL). The estimated parameters are summarized on
Table 1. The estimated distributions are also plotted on Figure 4. We calculate the Marginal rates
of substitution (onwards referred to as tastes) Taste(x) = µx

µL
as the ratio of any coefficient and the

Length coefficient. This allows separating the issue of the estimation of the model scale and the
derivation of people’s preferences. While the model scale defines one’s sensitivity to an attribute
change on choice probabilities, tastes allow understanding the relative value of distance of each
attribute.

The bias of tastes is defined as:

Bias of tastes =
(
µE

µL
− µ̂E

µ̂L

)2

+

(
µI

µL
− µ̂I

µ̂L

)2

+

(
µS

µL
− µ̂S

µ̂L

)2

Tab. 1: Estimates, tastes, bias of tastes and D-error for the base models

µL µE µI µS µPS σE σI
µE
µL

µE
µL

µE
µL

Bias of
tastes D-error

True value -10 -2 3 1 1.5 0.5 1 0.2 -0.3 -0.1 - -
MNL -5.783 -0.775 1.729 0.486 1.327 - - 0.133 -0.299 -0.0849 0.0584 0.0011
MXL -9.938 -1.334 2.991 0.974 1.518 0.345 0.945 0.134 -0.302 -0.0982 0.0657 0.0028
PMXL -9.964 -1.694 2.986 0.993 1.491 0.484 0.863 0.170 -0.300 -0.0997 0.0296 0.0013
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Fig. 4: Base models estimated parameters for elevation (left distribution) and infrastruc-
ture (right distribution) or distribution against true distributions

For the MNL model, the model marginal substitution rate is -13.3% for elevation gain, while the
actual value is -20%. For bicycle infrastructure, the model outputs a taste of +29.9%, while the
actual value is +30%. The MXL shows similar bias. Moreover, the MXL estimates a standard
deviation for elevation gain that is way lower than the actual value. The PMXL shows less bias
than the other base models, and estimates closer standard deviations to the true values. However it
does not represent the average tastes of the individuals in the dataset. The taste for elevation gain
is still shifted towards over-represented individuals (see also Figure 4). For the other parameters,
however, all models show almost no bias. This is because the individual number of observations is
uncorrelated with the other parameter values.

These estimations allow us to search for ways to decrease the taste bias. The developed strategies
are presented in the following section.

5 Sampling and weighting strategies

We implement a number of strategies to correct the bias in tastes of the Panel Mixed Logit
model estimated on unbalanced data. These methods use subsampling, weighting techniques, or
a combination of both.
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Sampling strategies

To correct the dataset unbalance, several sampling strategies have been tested out. Their pur-
pose is to reduce the bias in the estimated parameters compared to the actual parameters of the
population.

Naive subsampling: We reduce the dataset size by randomly drawing a subset of the obser-
vation. This method does not aim to reduce the bias, but is used as a benchmark for bias and
efficiency.

Pruning: We remove any individual with less then k0 observations from the dataset.

Uniform random subsampling: To keep the same number of choice experiments for each
individual, we choose k as the minimum number of observations for an agent in the dataset and
select k observations for each individual randomly. This method is naive, but some extensions
could be added, e.g. keeping dissimilar observations.

Uniform random truncation: For many experiments, some individuals will only have one
observation in the dataset (k = 1). Thus, another method would be to randomly choose n > 1 and
select n observations per individual. If an individual has less than n observations in the dataset,
all their observations would be selected.

Subsampling of repeated observations: Another possibility for subsampling that would keep
more variability in the dataset is to have a subsampling method that keeps, for each individual,
one observation per choice scenario. The unbalance in the resulting dataset can again be handled
by weighting the likelihood function.

A Maximum Weighted Likelihood Estimation (MWLE)

Sampling strategies reduce bias by reducing the potential over-representation of some individuals
in the dataset. However, it also leads to lower efficiency of the estimates. Another way to deal
with this bias would be to modify the likelihood function so that the estimator accounts for the
dataset unbalance by penalizing over-represented individuals.

We implemented a new method to weigh the likelihood function. Let β = (µ,Σ) be the model pa-
rameters. The goal of the weighting algorithm we describe below is that each individual contributes
equally (has the same weight) in the likelihood function. For individuals n ∈ {1, ..., N}, we note
w = (w1 . . . wN ) the vector of individual weights. We note LL(β) =

(
ln P̂i1(β) . . . ln P̂iN(β)

)
the vector of individual contributions to the log-likelihood. The weighted likelihood function is
thus given by:

LLw(β) = w⊤LL(β) =

N∑
n=1

wn ln P̂in(β)

Our goal is to find the vector of weights w∗ for which each individual gives the same contribution to
the weighted likelihood function evaluated at the estimated parameters. Each iteration calculates
weights that are inversely proportional to the weighted likelihood contribution of an individual,
using the weights of the previous iteration. This is equivalent to solving the following fixed-point
problem: w∗ = F (w∗), where, for an element wj of w, we have:

F (wj) =
(wj ln P̂ij(β̂))

−1

1
N

N∑
n=1

(wn ln P̂in(β̂))
−1

; β̂ = argmax
β

LLw(β) (10)

ϕ =

(
1
N

N∑
n=1

(wn ln P̂in(β̂))
−1

)−1

is a normalizing constant ensuring that
N∑

n=1
wn = N ; which will

be useful to compute the AVC matrix of the estimates.

To solve this fixed-point problem, the solution algorithm builds a sequence of weight vectors w(k) =(
w

(k)
1 . . . w

(k)
N

)
which can be described by the pseudo-code below.
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Algorithm 1: Algorithm to determine optimal weights; w∗ = F (w∗)

Input: X,y, n0, ε
Result: w∗, the vector of optimal weights
Initialization:
w(1) ← (1 . . . 1)
k ← 1
while ∥F (w(k))−w(k)∥ > ε; // F also depends on X,y
do

ŵ(k+1) ← F (w(k)) ;
if k > n0 then

w(k+1) ← λkŵ
(k+1) + (1− λk)w

(k) ; // Method of successive averages
else

w(k+1) ← ŵ(k+1);
end
k ← k + 1

end

The Method of Successive Averages (MSA) (Robbins & Monro, 1951), ensures the convergence of
the sequence. We use λk = 1

k−n0
, so that the kth calculated weight vector is the arithmetic mean

of the previously computed weights, i.e. w(k) = 1
k−n0

k∑
i=n0

ŵ(i). This method begins to be applied

after n0 iterations, so the first weights are not included in the average.

The simulation experiment described in section 3 is then carried out for the following setups:

1. Whole dataset, weighted

2. Random naive subsampling at 500 observations

3. Pruning individuals with less than 5 observations

4. Randomly truncated at 2, 5, 10, 20, 50 observations, unweighted and weighted

5. Randomly subsampled at the minimum number of observations per individual (equivalent
to a truncation at 1 observation with this dataset)

6. Random subsampling of unique observations

Setups 2 to 5 use random subsamples of the generated datasets. The subsampling algorithms are
used 100 times for the same dataset, and the results are averaged (the standard deviation is also
calculated). With 100 different generated populations and observations, these setups are repeated
10000 times.

6 Results

This section compares two metrics for the different strategies: Bias of tastes and D-error, stored
in Table 2. Some insights given by these tables are:

• For the models using the whole datasets, the bias in tastes has been significantly reduced
by the weighting algorithm while not affecting the model efficiency (see Figure 5 for a plot
of the estimated mixing distributions).

• As expected, the naive and pruning strategies, used as benchmarks, give worse results than
the base model in efficiency and bias.

• The unweighted truncation give the best results in terms of Bias of tastes for low truncation
thresholds (see Figure 6). The more the dataset is truncated, the more it is balanced, and
the more the estimates are close to the population’s mean. Conversely, lower truncation
thresholds also lower the estimated parameters’ efficiency, and increase variability between
random subsamples. The bias-variance trade-off is higlighted by the green curve on Figure
8.
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• The weighted truncation, while slighltly increasing the D-error for the same truncation
threshold, shows a decrease in bias of tastes when the threshold increases at 50 (see Figure
7). The red curve on Figure 8 shows that the weighting algorithm breaks the bias-variance
trade-off when a certain truncation threshold is exceeded.

• Removing repeated observations behave similarly to truncation.

Moreover, random truncation to lower thresholds gives more variability to the model output; it is
important to repeat random truncation several times and average the results to lower bias.

Tab. 2: Estimates, tastes, bias of tastes and D-error for the base models

βL βE βI βS βPS σE σI
βE
βL

βI
βL

βS
βL

Bias of
tastes D-error

True value -10 -2 3 1 1.5 0.5 1 0.2 -0.3 -0.1 - -

MNL -5.783 -0.775 1.729 0.486 1.327 - - 0.133 -0.299 -0.0849 0.0584 0.0011
MXL -9.938 -1.334 2.991 0.974 1.518 0.345 0.945 0.134 -0.302 -0.0982 0.0657 0.0028
PMXL -9.964 -1.694 2.986 0.993 1.491 0.484 0.863 0.170 -0.300 -0.0997 0.0296 0.0013

PMXL, w -10.307 -2.136 3.162 1.021 1.529 0.617 0.960 0.207 -0.307 -0.0991 0.0107 0.0011

Naive -10.188 -1.538 3.154 1.002 1.530 0.365 0.998 0.150 -0.310 -0.0987 0.0395 0.0093
Pruned -9.979 -1.509 2.954 0.993 1.495 0.357 0.838 0.151 -0.296 -0.0996 0.0490 0.0013

Trunc 2 -10.333 -1.999 3.109 1.002 1.574 0.423 1.018 0.193 -0.301 -0.0975 0.0071 0.0421
Trunc 5 -10.038 -1.849 3.067 0.982 1.522 0.379 1.003 0.184 -0.306 -0.0981 0.017 0.0143
Trunc 10 -9.989 -1.786 3.082 0.984 1.497 0.369 1.005 0.179 -0.309 -0.0987 0.023 0.0074
Trunc 20 -9.988 -1.749 3.104 0.989 1.491 0.373 1.006 0.175 -0.311 -0.0992 0.0271 0.0042
Trunc 50 -10.001 -1.727 3.094 0.992 1.496 0.402 0.975 0.173 -0.309 -0.0993 0.0288 0.0023

Trunc 2, w -12.908 -2.600 3.990 1.257 2.073 0.473 1.199 0.201 -0.309 -0.0980 0.0106 0.0703
Trunc 5, w -11.421 -2.252 3.612 1.113 1.743 0.451 1.126 0.197 -0.316 -0.0978 0.0175 0.0194
Trunc 10, w -10.927 -2.165 3.501 1.072 1.636 0.465 1.097 0.198 -0.320 -0.0983 0.0214 0.0091
Trunc 20, w -10.687 -2.161 3.438 1.051 1.589 0.495 1.073 0.202 -0.322 -0.0985 0.0228 0.0048
Trunc 50, w -10.460 -2.163 3.311 1.033 1.554 0.545 1.015 0.207 -0.317 -0.0988 0.0189 0.0023

Obs -9.977 -1.781 3.076 0.993 1.524 0.362 1.001 0.178 -0.309 -0.0997 0.0231 0.0075
Obs, w -11.886 -2.338 3.735 1.169 1.778 0.464 1.148 0.196 -0.314 -0.0989 0.0156 0.0397
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Fig. 5: Estimated distributions for elevation gain (left) and infrastructure (right), PMXL
and PMXL weighted

9



4 2 0 2 4 6
Parameter value

0.0

0.2

0.4

0.6

0.8

1.0

De
ns

ity

True µ
Trunc at 2
Trunc at 10
Trunc at 50

Fig. 6: Estimated distributions for elevation gain (left) and infrastructure (right), Trun-
cated at 2, 10 and 50
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Fig. 7: Estimated distributions for elevation gain (left) and infrastructure (right), Trun-
cated at 2, 10 and 50, weighted
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Fig. 8: Bias of tastes vs. D-error for all the different strategies

7 Conclusion and Future work

The simulation study has shown that it is possible to remove bias by applying weighting and
subsampling methods. However, it also shows the bias-variance trade-off a modeller may face
when choosing an optimal strategy. The newly-developed weighting algorithm breaks this trade-
off by evening the contribution of each individual in the likelihood function. This allows maximum
potential efficiency, while keeping a reliable explanatory model that is not biased towards over-
represented individuals.

This simulation included one mixed parameter that was correlated (βE) to the number of observa-
tion and one that was not (βI). The results show that the models estimates are mostly unbiased
for the parameter that did not correlate. As individual parameters are randomly distributed in
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the population, we deduce that if the over-representation of some tastes is randomly distributed,
the change in estimation may be negligible. The next step is to test these different strategies on
different datasets to see how the preferences may change, i.e. how the number of observations
correlates with the individual taste. Future work could also encompass a more thorough anal-
ysis on large-scale datasets, showcasing and tackling further challenges, such as bias in scale or
computational burden.
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