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SHORT SUMMARY

Person-to-person contact is fundamental to the spread of epidemics. Human mobility is important
for understanding the pattern of person-to-person contact. Therefore, understanding human travel
behavior is crucial to the understanding of the geographic spread of infectious diseases. Transporta-
tion models built to give details on human movement and contact can then be used to simulate
epidemic spread. Such has been done in the epidemic model Episim. In addition, there is also
research showing people’s social networks have strong influence on their travel behavior, such as
destination choice. Therefore this study sets out to verify whether adding social network and coor-
dinated destination choice to the epidemic model has impact on the spatio-temporal transmission
progression of epidemics. Results show that though the total number of infections do not change,
the addition of a social network and coordinated destination help capture during what kind of
activities infection events are taking place. Coordinated travel with social networks contribute to
a more rapid spread in the beginning. Moreover, results emphasize that social networks should
be integrated in conjuncture with joint-travel to better capture social travel behavior and in turn
epidemic spread.
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1 INTRODUCTION

Human mobility, like many other aspects of human behavior, is socially driven. In recent years, the
transportation modeling field has increasingly tried to capture the undeniable link between social
connections and travel behavioKim et al.| (2018). Various elements of travel behavior, including
the creation of travel activities, choice of destination and mode of transportation, amongst others,
are affected by social connections (Kim et al.,|2018]). Person-to-person contact is crucial to epidemic
spread models. Since social networks can strongly influence travel behavior and contact patterns,
it is beneficial to add in social networks when using travel demand models to simulate disease
spread.

Previous researchers have used agent-based epidemic models to better understand and predict the
spread of infectious diseases in Singapore (Sun et al., 2014; Mo et al., |2021)), the Twin Cities (Bota
et al.l |2017; |Hajdu et al.l |2020) or Berlin (Miiller et al., 2020). Epidemic transition models varied
from the simplest Susceptible-Infected model (SI), in which agents are exposed only while traveling
(Hajdu et al., 2020), to the more complex Susceptible-Exposed-Infections-Removed (SEIR) model
with exposure while traveling and at destinations (Miiller et al.l [2020; Mo et al., |2021). On the
other hand, travel demand generation was rather simplistic, as it replicated transit trips (Bota et
al., 2017} Hajdu et al.,|2020)) or smart-card bus trips (Sun et al., 2014; Mo et al.l [2021). A notable
exception is Miiller et al.| (2020)), who replicated activity-based trajectories from mobile phone data
and used traffic and transit assignment in MATSim. Furthermore, [Miiller et al.| (2020) validated
the results of Episim with COVID-19 hospital cases in Berlin.

Social connections could potentially affect many aspects of travel behavior and by extension travel
demand modeling. Socially connected people may share destinations, which has been seen in the
studies by van den Berg et al.| (2010]) and |[Moore et al.| (2013). Moreover, Ronald et al.| (2012]), Ma et
al.| (2011)) and | Dubernet & Axhausen|(2015) presented an agent based system which integrate joint
decision-making mechanisms based on rule based simulations of a bargaining process, but none
have integrated and implemented a social network in a complete travel demand model framework.

In addition, none of the studies have explicitly considered the impact of social networks in epidemic



spread. This research seeks to fill the gap by adding in a synthesized social network to the process.
As a first step, we focus on adding coordinated destination in travel demand generation, and
infection rules influenced by social connections in Episim to see the impact of social network on
infection spread patterns and rates.

2 METHODOLOGY

In order to simulate the epidemic spread, we generate travel demand with the open-source mi-
croscopic transportation orchestrator (MITO) (Moeckel et al.l |2020]), which we later assign to the
road and transit networks using the Multi-Agent Transport Simulation (MATSim) (Horni et al.)
2016). The event files from MATSim are later fed into Episim (Miiller et al., 2020) that runs for
an entire year.

The base input data for any agent-based model is the synthetic population, specifically, the syn-
thetic population for the Munich metropolitan area. It comprises 4.5 million persons in 2.3 million
households, but lacks social networks and group quarters (Moreno & Moeckel, 2018). For this
research, a social network and nursing homes are implemented. The social network is built for
the Munich metropolitan area. We also utilize the social network in conjunction with rule-based
coordinated destination in the travel demand generation to account for joint destination.

This section summarizes the generation of the social network, the incorporation of the social
network into MITO for coordinated destination, and the incorporation of the social network into
Episim.

Geolocation-based social network

We generate a geolocation-based, ego-centric social network for the study area. They are so-called
personal social networks or egocentric networks, consisting of an ego or focus point, connected
to alters, e.g. family members, co-workers, etc. Due to the lack of relevant collected data on
social network structures in the area, the network is currently built on characteristics present
in the synthetic population. As such, the generated network reflects a degree of homophily and
reciprocity.

Homophily describes how like attracts like, that people tend to be socially connected with those
similar to them. Reciprocity is how social connections are bi-directional. If A is friends with B,
then B is friends with A. However, it does not take into account the transitivity property of social
networks, which means that if A is a friend of B, and B a friend of C, then A would also have a
higher chance of being friends with C.

Type of social tie Edge build criterion Average degree
Household From same household 22
Neighborhood | Share dwelling location and dwelling type 25
Education Aitend same school, same age 9.5
Work Share job location and job type 55
Nursing home Share nursing home location 10

Figure 1: Network type and build criterion

The social network is currently built on five kinds of relationships, household, neighborhood,
education, work and nursing home. Those who reside in the same household are connected to each
other. Those who share the same dwelling location and a similar dwelling type, such as single-
family-unit, are socially connected. Those who attend the same school and are of the same age are
presumed to be socially connected. Those who share a job location and job type have a chance of
being socially connected. Residents in the same nursing home also forge social connections with
each other. For neighborhood, education, work and nursing home locations, social connections are
built using a small-world network algorithm with a maximum clique size of 10. Social connections
forged from household, neighborhood, education or work categories are built with the criteria
indicated in Figure[l] Figure[I]also shows the average degree forged in each type of social tie using
these criteria. For example, a person attending school is on average connected to 9.5 others who
attend the school with them. A person’s total social connections comprise of connections from all
five of these relationship types.



Travel demand model and rule-based coordinated destination

The second part of this study uses an agent-based travel demand modeling suite to generate daily
movements of individuals. To achieve this, the synthetic population with the geolocation-based
social network were fed into MITO (Moeckel et al., [2020). MITO is an agent-based travel demand
model that uses econometric statistical models to estimate trip generation, trip distribution, mode
choice, and time of day for each individual in the synthetic population. After that, MATSim
(Horni et al.l 2016)) is used as a dynamic traffic assignment model to assign car trips to the road
network and simulate public transport trips on the transit system (Swiss Federal Railways), [2020).
The individual movements are estimated for a typical 24-hour day for the following trip purposes:
home-based work (HBW), home-based education (HBE), home-based shop (HBS), home-based
recreation (HBR), home-based other (HBO), non home-based work (NHBW) and non home-based
other (NHBO).

This study extended MITO by adding the rule-based coordinated destination choice. In Figure 2]
the modifications to the existing MITO model sequence is shown. After the Trip Distribution step,
we add an Arrival Time Choice step in which we compare the trip list of an agent with the trip lists
of those in their social network. Compatible trips are defined as trips that have arrival times within
six hours of each other, and are of the same purpose. We also give a hierarchy to coordinated trips
depending on social network type. Agents prioritize coordinating with household members, then
with coworkers or schoolmates and lastly with those from the ‘neighbor’ social connection type. If
compatible trips are found, we then proceed to the next step, Destination Coordination. In this
step, the destination and arrival time of the trip belonging to the agent’s social connection is set
to be the same as the agent’s.

After any changes of destination have been made to the trip, the mode choice is ran without any
modifications. The departure time can then be calculated based on the chosen mode and projected
travel time.

Model sequence

Trip Generation

l
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|
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Figure 2: MITO modified model sequence

Epidemic spread model Episim

Episim is an infection dynamics model build on top of a person’s movement trajectories as devel-
oped by the Sebastian Miiller et al. at the Technical University of Berlin (Miller et al., 2020). It
allows testing of intervention policies such as home-office mandates, mask-wearing mandates, etc.



Episim is comprised of several models, the contact model, infection model, and disease progression
model (Miiller et al|2020]). The contact model defines who comes into contact with whom. Persons
at the same location or facility can come into contact and infect each other. These facilities could
either be in transit or at an activity location such as home or work. When two persons come
into contact, a probability of infection is calculated using the infection model, which gives this
probability based on contact intensity, contact duration, viral shedding and intake. If a person
becomes infected, the disease progression model then gives the probability that this newly exposed
and infected person progresses to the next stage of the disease. The exposed person can become
infectious, recover, or get worse. The simulation runs for a year or until no more infections occur.
For more details on Episim, please refer to (Miiller et al., 2020)).

To see the effect of social networks on epidemic spread, we extended the Episim model to account
for social networks. Firstly, the contact model was modified. This contact model looks at agents
when they leave a facility. Instead of randomly selecting other agents who are at the facility at the
same time, we increased the likelihood of being selected if they belong to the same social network.
Secondly, we changed the infection model parameters to consider that persons in the same social
network may reduce social distancing, and therefore, the viral load may be increased. This is
accomplished by increasing the contact intensity factor. For contacts from within the agent’s
social network, the contact intensity is multiplied by a factor of 10. Short of observed data, this
factor is an exogenous assumption that ensures a higher infection rate within social networks. The
current contact intensities and infection probabilities are set according to those specified in

2020)) for the COVID 19 virus.

Scenarios

By varying the addition of social network and coordinated destination choice, we look at a total
of four scenarios, as seen in Figure

Episim rules

Selection priority given to

Randomly selected maximum of . .
social network, maximum

three contacts

MITO rules three contacts
No coordinated destination Base Base.SocialNetwork
With coordinated destination Coordinated Coordinated.SocialNetwork

Figure 3: Scenario description
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Figure 4: Episim contact rules for different scenarios regarding social network

In the Base scenario, for an agent at a certain location/facility, a maximum of three contacts
are randomly selected from those who are at the same location and the same time as the agent.
This number is the base assumed setting in the calibrated Episim Berlin scenario
2020).The infection probability is calculated between the agent and each of these three contacts.
This is graphically represented in Figure [ in the left box.

In the Base.SocialNetwork scenario, similarly, a maximum of three contacts are selected, but
selection priority is given to those within the agent’s social network. If there are less than three
contacts at the location in the agent’s network, then random agents are selected until there are
three contacts. This is seen in the right box in Figure [



The above scenarios are then repeated, but with a travel demand that now takes into account
coordinated destination choice based the social network. To reduce model runtime, all scenarios
are ran for a 5% scaled-down population for computational time savings. The social network is
generated after scaling down. Episim results are reported after upscaling factors to 100%.

3 RESULTS AND DISCUSSION

Epidemic spread with and without social networks, with and without coordinated destination are
compared. The main hypothesis is that the total number of infected persons would not vary,
as agents perform the same number of activities. But the spatial and temporal distribution is
expected to be affected by the presence of social networks and coordinated destination choice. For
example, we would be able to better capture the outbreak in nursing homes or large employment
centers; reducing contact at such hotspots may be more sensitive to interventions than limiting
social contacts in general.
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Figure 5: Number of infections from day 1 to day 50

In the Figure 5] the Episim total infected curve for the Munich region for each of the four scenarios
is shown. As expected, the total number of infections do not vary much between each scenario.
The trajectory and the peak of the graph are only slightly staggered. We zoom in on the first 14
days of the epidemic outbreak in Figure [6]
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Figure 7: Number of infections by infection location and social network status



Figure [6] shows the day-by-day number of infection events for each scenario. In addition, the fig-
ure shows the proportion of infection events between socially connected agents (dark gray) and
between strangers (light gray). At this more micro-temporal scale, we see that coordinated des-
tination scenarios have a quicker start compared to the base scenarios, with infections in Coordi-
nated.SocialNetwork scenario spreading most rapidly. Within the Base and Coordinated scenarios,
the scenario with social-network contact rules also spread faster than scenarios without. This figure
also shows that the early disease transmissions tend to be from social contacts. Once the epidemic
is more wide spread, infection events between strangers begin to make up the larger proportion.
Infections from the social network scenarios with social network contact rules have a higher share
of being infected by someone within their social network.

We then break down the infection events by activity type. Figure [7] shows the proportion of in-
fection events from the social network and from strangers. The proportion of infection from social
network ties increased for Coordinated Destination scenarios compared to the Base scenarios in
the Other, Recreation and Shopping activities. The addition of coordinated destination choice
captures how non-essential leisure activities may be conducted together with friends, family and
acquaintances, and captures the disease transmission that may happen as a result. Without co-
ordinated destination, agents would seldom meet others in their social network, whereas activities
like home, work, education and being in a nursing home usually guarantees that agents are in the
same location as someone from their social network.

Figure [8] shows the percentage of infection from social network contacts per total number of in-
fections. The addition of social networks has increased the share of infections that come from

social network ties. The Coordinated.SocialNetwork scenario has the highest proportion of social
network related infection events.

Scenario Base Coordinated
Random contacts rule Social network contact rule Random contacts rule Social network contact rule

Home 233% 33.3% 22.8% 32.2%
Work 4.0% 7.2% 3.9% 6.9%
Education 1.6% 3.3% 1.6% 32%
Nursing 0.2% 0.8% 0.2% 0.8%
Other 0.1% 0.3% 2.3% 51%
Public transit 0.0% 0.0% 0.0% 0.0%
Recreation 0.0% 0.0% 0.1% 0.1%
Shopping 0.0% 0.0% 0.0% 0.0%
Total 20.2% 44 9% 30.9% 48.3%

Figure 8: Percentage of infection from social network contacts per total number of infections

The percentage of infection from social network contacts per number of infections varies by ac-
tivity purpose. For example, in Base.SocialNetwork and Coordianted.SocialNetwork scenarios,
social network in nursing homes only account for 0.75% of total infections, because the population
of nursing homes is rather small. However, social network ties account for a big proportion of
infections occurring in nursing homes, as seen in Figure [0]

4 CONCLUSIONS

We combined a simple synthesized social network with an agent-based travel demand model and
epidemic spread model to see possible effects on epidemic spread patterns. Our social network
and coordinated travel, though simplistic, demonstrate that social networks have some influence
on disease spread patterns. It can affect how fast the disease spreads, and where disease is spread.

Future research should focus on implementing more comprehensive joint travel logic based on social
network connections in the travel demand model, as the scenarios with coordinated travel showed
a marked effect on epidemic spread compared to those without. Another angle for refinement is
the social network. Currently the social network is based on shared home, neighborhood, work or
education locations in the synthetic population. The next iteration can include social connections
outside of household, neighborhood, education and work. These connections can reflect general



friendship and social ties. In addition to homophily and reciprocity, this social network can incor-
porate the transitivity properties of social connections. Nevertheless, this research presents a novel
coupling of synthesized social networks, travel demand modeling and epidemic spread modeling.
It demonstrates a way to model human connections in human movement, and how an epidemic
travels through the human network.
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